

CERN Academic Training Lectures 12-16 June 2006 Geneva, Switzerland

Technological challenges of CLIC Sub-nanometre Stabilization of Accelerator Magnets

Stefano Redaelli - AB Department

Outline

- Luminosity in a linear collider
- Perturbation of the luminosity performance
- The CLIC stability study
- Achieved magnet stability
- Outlook

The CLIC complex

Energy (c.m.)	3-5 TeV	
Luminosity	0.8 x 10 ³⁵ cm ⁻² s ⁻¹	
Repetition rate	150 Hz	
Colliding beam size	60 x 0.7 nm ²	4
Beam area	4.2 10 ⁻¹³ cm ²	
Total machine length	~ 2 x 17 km	

Final focus system

- Squeeze the opposing beams
- Steer beams into collision
- Beam collimation
- Beam diagnostics

Luminosity in a linear collider

The luminosity is produced by the superimposition of the opposing beams

Perturbations of luminosity performance

Ideal world:

ALL lattice components along the ~ 35 km of CLIC *perfectly* aligned to the nominal beam trajectory!

The two opposing beams have the desired spot sizes at the interaction point and always collide

 \Rightarrow We get the optimum luminosity!

Real world: Alignment errors of magnets / beam offsets in the RF cavities

Larger beam sizes / Relative BB offsets Pulse-to-pulse jitters (position/size) Asymmetric collisions

⇒ Degradation of the luminosity performance (design value)!

How do we produce the luminosity in CLIC? What generates perturbations?

Job of the poor accelerator physicist

6

How do we produce small beam size?

Nanometre size beams are produced in the focal point of the quadurpole "lens"

→ the "nanobeams" at the IP move as the quadrupoles

Tolerance for luminosity reduction

Beam beam offset, ∆y [nm]

Why do magnets move??

Sources of magnets vibrations

Sources of magnets vibrations

What perturbs the quadrupole motion?

- Effect of cooling water (different flows)
 ⇒ increase the motion by several nm, but can be kept under control!
- Resonances of the alignment support (not optimized!) ⇒ dangerous vibrations, well beyond the limit of beam-based feedbacks

What perturbs the quadrupole motion?

Noise in the quiet LHC tunnel:

- Lift induces a vibration of the detector cave at ~ 30 Hz
- Ventilation increases the noise with many contributions at various frequencies

Vibration measured in the detector cave, tens of metres away from the lift.

What perturbs the quadrupole motion?

Ground motion and accelerator environment are the main sources of motion

The CLIC stability study

Demonstrate the **feasibility of colliding nanometre-size particle beams** in a *real accelerator environment* for future linear colliders like CLIC.

CLIC tolerance: 0.2 nm RMS above 4 Hz

<u>Our approach</u> → Use state-of-the-art stabilization devices to stabilize CLIC prototype quadrupoles in a *normal working environment* (Different approaches pursued in other laboratories in previous years!)

Steps towards feasibility demonstration (first phase of our study):

- I. Establish vibration measurements with sub-nanometre accuracy
- II. Investigate modern techniques for stabilizing accelerator magnets
- III.Predict the performance of CLIC achievable with the measured magnet stability

CLIC stability people: R. Assmann, W. Coosemans, G. Guignard,

S. Redaelli, D. Schulte, F. Zimmermann, I. Wilson

Our experimental test stand

- Vibration measurements
- Objects to stabilize
- Support structure
- Active/passive damping
- Alignment/inclination
- Systematic effects

- Geophones (3 types)
- → Prototypes of CLIC accelerator magnets
- \rightarrow Honeycomb table (min. resonance above 230 Hz)
- \rightarrow Two systems (soft and stiff)
- → Stretched-wire system (WPS) / accelerometers
- → Water on/off; loud speakers; alignment support

support

Stretched wire

Capacitive sensor

Honeycomb table

Quadrupole on its

Active stabilization system

Location of the stabilization test stand

Laboratory is chosen close to streets, normal working areas, offices, workshops...

Ground motion of **up to ~ 12 nm** (RMS) above a few Hz

... we want to test stabilize magnets in a *realistic accelerator environment*!

Much more stable places exist!

But we want a **noisy environment** to provide a **feasibility demonstration** of required stabilization!!

Geophones for sub-nanometre vibration measurements

Triaxial **geophones** (seismometers) are used to measure vibrations (Measure velocities in the ~ 4Hz - 315 Hz frequency range)

The geophone measures velocities with respect to a reference mass at rest (absolute vibration velocities)

$$V_{\rm coil} \approx -n(2\pi r_{\rm c}B)v$$

Sensor calibration to the sub-nm level

We believe that 1 nm is 1 nm within 10%!

(good accuracy within the frequency range of interest)

- Coupled motion below f₀
- Good damping above f_0
- Resonant amplification at $\sim f_0$

Active damping required to counteract amplification of motion around the resonance frequency!

Active stabilization

By applying a **time-dependent force** (actuator) to the system, the resonant peak can be damped. Good damping at high frequency is kept!

Actuator implementation depends on the type stabilization technology...

Our stabilization system

- Passive damping → stiff rubber
- Active damping
- → geophones / piezo-cristals

This system provides a damping of **3D** table vibrations!

Best vertical stabilization of magnets

CLIC prototype magnets stabilized to the sub-nanometre level !!

Above 4Hz: 0.43 nm on the quadrupole instead of 6.20 nm on the ground.

What was achieved in other laboratories?

Magnet stability was advanced from the **10 nm level** to the **0.5 nm level**!

Achieved CLIC luminosity

Ok, this is good. But is it stable?

Quadrupole vibrations kept below the 1 nm level over a period of 9 consecutive days!

Conclusions

- The CLIC Stability Study has brought modern stabilization technology to the accelerator field
- CERN successfully used this technology: first sub-nanometre stabilization of accelerator magnets (0.5 nm RMS above 4 Hz)
- Further improvements are required:
 Additional improvement by a factor 3-5 would be needed
 Find a technical solution to be integrated in detector region
 Optimize magnet and support design against vibrations
- We are confident that we will have the required stabilization technology in hands once it will be needed for CLIC!

Acknowledgments

O. Brüning, W. Coosemans, R. Corsini, S. Sgobba, M. Taborelli

Presentations based on the results achieved by the CLIC stability study team and by the CLIC alignment team

Reserve slides

Frequency analysis of vibrations

1.5