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•Luminosity in a linear collider
•Perturbation of the luminosity 
performance
•The CLIC stability study
•Achieved magnet stability
•Outlook
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The CLIC complex
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Energy (c.m.) 3-5 TeV
Luminosity 0.8 x 1035 cm-2s-1

Repetition rate 150 Hz
Colliding beam size 60 x 0.7 nm2

Beam area 4.2 10-13 cm2

Total machine length ~ 2 x 17 km

Damping
Ring
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Electron main LINAC
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dump
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Positron main LINAC

Electron
source
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source eñe+
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IPFinal
Focus

Final
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Final focus system
• Squeeze the opposing beams
• Steer beams into collision
• Beam collimation
• Beam diagnostics
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Luminosity in a linear collider
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CLIC:
σx* = 60 nm
σy* = 0.7 nm

e+

e-
nb

1/frepN IPLuminosity ↔ rate of interesting event:

The luminosity is produced 
by the superimposition of 
the opposing beams

HD = Disruption factor
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Perturbations of luminosity performance
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Ideal world:
 ALL lattice components along the ~ 35 km of CLIC 
perfectly aligned to the nominal beam trajectory!

The two opposing beams have the 
desired spot sizes at the interaction 
point and always collide
⇒ We get the optimum luminosity!

How do we produce the luminosity in CLIC?
What generates perturbations?

σy* = 0.7 nm

IP

Larger beam sizes / Relative BB offsets
Pulse-to-pulse jitters (position/size)
Asymmetric collisions
⇒  Degradation of the luminosity 
      performance (design value)!

Real world:
 Alignment errors of magnets / beam offsets in the RF 
cavities 

σy* >  σy,*nom
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Job of the poor accelerator physicist
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How do we produce small beam size?
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Incoming
beam

Actually, two quadrupoles are used to 
squeeze both horizontal and vertical size!

Nanometre size beams are produced in the 
focal point of the quadurpole “lens” 
➙ the “nanobeams” at the IP move as the 
     quadrupoles

CLIC final focus system
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Tolerance for luminosity reduction
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Number of 
elements

Horizontal 
tolerance

Vertical 
tolerance

Final focus 2 x 2 0.0078 µm 0.0002 µm
LINAC 1300 x 2 0.014 µm 0.0013 µm
RF’s > 13 km > 100 µm ≈ 1 µm

σx = 100 x σyBeam offsets →

Beam sizes   →

Luminosity decreases exponentially 
with the relative beam-beam offset! 

Why do magnets move??

!y

"kIdeal trajectory IP

Beam 1 Beam 2!yIP

Δyquad≈ΔyIP 
➙ Sub-nanometre tolerances for the bulk magnet! 
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Sources of magnets vibrations
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Sources of magnets vibrations
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What perturbs the quadrupole motion?
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• Effect of cooling water (different flows)
  ⇒ increase the motion by several nm, but can 
       be kept under control!

• Resonances of the alignment support
  (not optimized!)  ⇒ dangerous vibrations, 
  well beyond the limit of beam-based feedbacks

160 times more on 
top than on the base 
(sound excitations with 
loudspeaker)

No water

With water!

~ 7 nm at 15 Hz
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What perturbs the quadrupole motion?
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Noise in the quiet LHC tunnel:

Lift

• Lift induces a vibration of the detector
  cave at ~ 30 Hz
• Ventilation increases the noise with
   many contributions at various frequencies

≈ 0.4 nm (RMS)

Vibration measured in the detector cave, 
tens of metres away from the lift.

Ventilation OFF

Ventilation ON

Effect on motion
above 20Hz: ~0.1 nm
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What perturbs the quadrupole motion?
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CLIC FF tolerance

LEP ON 
(noisy: accelerator environment)

LEP OFF 
(quiet)

W. Coosemans et al., 1993

Ground motion and accelerator environment are the main sources of motion
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Demonstrate the feasibility of colliding nanometre-size particle beams in a 
real accelerator environment  for future linear colliders like CLIC.

Our approach → Use state-of-the-art stabilization devices to stabilize CLIC 
                           prototype quadrupoles in a normal working environment

                        (Different approaches pursued in other laboratories in previous years!)

I. Establish vibration measurements with 
sub-nanometre accuracy

II. Investigate modern techniques for stabilizing 
accelerator magnets

III.Predict the performance of CLIC achievable 
with the measured magnet stability

Steps towards feasibility demonstration (first phase of our study):

CLIC tolerance: 0.2 nm RMS above 4 Hz
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The CLIC stability study

CLIC stability people: R. Assmann, W. Coosemans, G. Guignard, 
S. Redaelli, D. Schulte, F. Zimmermann, I. Wilson
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Vibration measurements
 →
 Geophones (3 types)
Objects to stabilize
 → 
 Prototypes of CLIC accelerator magnets 
Support structure
 → 
 Honeycomb table (min. resonance above 230 Hz) 
Active/passive damping
 → 
 Two systems (soft and stiff)
Alignment/inclination 
 → 
 Stretched-wire system (WPS) / accelerometers
Systematic effects 
 → 
 Water on/off; loud speakers; alignment support

    

Honeycomb support  
structure (table)

(2.4 m x 0.8 m x 0.8 m)

Stretched wire
system

Isolators
Active stabilization
control system
Active stabilization
control system

Water
in/out

DAQ

CLIC prototype
quadrupole

CLIC prototype
quadrupole

Geophones
y

x
z
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Our experimental test stand
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Location of the stabilization test stand

Laboratory is chosen close to streets, 
normal working areas, offices, 

workshops…

Ground motion of up to ~ 12 nm (RMS) 
above a few Hz

… we want to test stabilize magnets in a 
realistic accelerator environment!

Much more stable places exist! 

But we want a noisy environment to provide a 
feasibility demonstration of required 

stabilization!!

Keller’s keller

17
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Geophones for sub-nanometre vibration measurements

Triaxial geophones (seismometers) are used to measure vibrations 
(Measure velocities in the ~ 4Hz - 315 Hz frequency range)

The geophone measures velocities with 
respect to a reference mass at rest

(absolute vibration velocities)

18
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Resolution inferred from the 
comparison of close-by sensors
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Resolution of 0.28 nm for 
RMS motion above 4 Hz 

Low-frequency limitation 
of fast geophones
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Sensor calibration to the sub-nm level
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±10%

We believe that 1 nm is 1 nm within 10%!
(good accuracy within the frequency range of interest)
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Passive stabilization - Mass/spring system

• Coupled motion below f0
• Good damping above f0
• Resonant amplification at  ~f0

Active damping required to counteract 
amplification of motion around the 

resonance frequency!

20
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No active 
damping

Active 
damping!

Active stabilization

By applying a time-dependent force (actuator) to the system, the resonant 
peak can be damped. Good damping at high frequency is kept!
Actuator implementation depends on the type stabilization technology…

21
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• Passive damping
 ➙ stiff rubber
• Active damping
 ➙ geophones / piezo-cristals

This system provides a damping of 
3D table vibrations!

Stacis2000 by TMC

22

Our stabilization system

Rubber

Geophone

Piezoelectric
actuator

Load

Floor
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Ground-to-table transmission

Best vertical stabilization of magnets

Integrated vertical RMS motion versus frequency

CLIC prototype magnets stabilized to the sub-nanometre level !!

Above 4Hz: 0.43 nm on the quadrupole instead of 6.20 nm on the ground.

Toleran.of 
linac 

quads 

Toleran. of 
FF quads 

Quad 
[nm]

Ground 
[nm]

Vertical 0.43 6.20
Horizontal 0.79 3.04
Longitud. 4.29 4.32

RMS vibrations above 4 Hz

Beam-based feedbacks 
correct motion below 

4Hz

(Normal working area)
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What was achieved in other laboratories?

DESY: studies on magnet stabilization
C. Montag, Nucl. Instrum. Meth. A 378 (1996) 369.

 Magnet stability was advanced from the 10 nm level to the 0.5 nm level!

SLAC: Hand-made system to stabilize a test 
mass (J. Frisch et al, PAC2001)
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Without stabilization (ground):
No significant luminosity is 

produced!

Transient Steady
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~ 70 % of the luminosity is 
steadily maintained!

With stabilization:
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Achieved CLIC luminosity
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Ok, this is good. But is it stable?

Quadrupole vibrations kept below the 1 nm level 
over a period of 9 consecutive days!
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Conclusions

• The CLIC Stability Study has brought modern stabilization 
technology to the accelerator field

• CERN successfully used this technology: first sub-nanometre 
stabilization of accelerator magnets (0.5 nm RMS above 4 Hz)

• Further improvements are required:

 Additional improvement by a factor 3-5 would be needed

 Find a technical solution to be integrated in detector region

 Optimize magnet and support design against vibrations

• We are confident that we will have the required stabilization  
technology in hands once it will be needed for CLIC!
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slides
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Frequency analysis of vibrations

We measure discrete 
vibration velocities

Fourier transform of 
the velocity

Power spectral density of 
displacement

Physical picture: Integrated 
RMS motion

This is what matters for accelerators!
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