
LCG Apps Area Meeting
11 January 2006

ATLAS Offline Release Process

David R. Quarrie
LBNL

DRQuarrie@lbl.gov

David R. Quarrie: ATLAS Offline Release Process

2LCG Apps Area Meeting: 11 Jan 2006

ATLAS CVS Structure
 Single CVS repository for

 ATLAS Offline Release
 Offline software and trigger algorithms

 ATLAS Production system
 Python job submission system

 User repositories
 For individual users

 Group repositories
 For physics working groups

 High Level Trigger infrastructure
 Glue for using offline software in online trigger environment

 Other CVS repositories for
 Gaudi

 Common framework shared with LHCb and others
 ATLAS Online and Trigger/Data Acquisition

 Focus of this talk is the ATLAS Offline Release

David R. Quarrie: ATLAS Offline Release Process

3LCG Apps Area Meeting: 11 Jan 2006

ATLAS Offline
 Approximately 1124 CVS modules (packages)

 152 containers
 971 leaf

 Contain source code or act as glue to external software

 Container hierarchy for commit & tag management
 Hierarchy by detector

 E.g. Inner Detector, Muon Spectrometer
 Each detector has containers for e.g. Simulation, Reconstruction, Reco EDM, etc.

 Hierarchy by subsystem
 E.g. Control (framework), Database

 Hierarchy by processing stage
 E.g. Simulation, Reconstruction

 Single container hierarchy cannot adequately reflect overall structure

David R. Quarrie: ATLAS Offline Release Process

4LCG Apps Area Meeting: 11 Jan 2006

CMT & Tags
 ATLAS uses CMT for configuration management

 Each package has a requirements file that specifies
 Entities (libraries, plug-ins, applications) built from sources within this package

 Can include e.g. Reflex dictionary generation
 Other packages that this package depends upon (e.g. for header files, libraries)
 Information exported to clients (header files, libraries, configuration variables)
 Run-time environment variables
 Special make targets (e.g. for building and running component tests

 Some packages act as interface/glue to external software

 Each package tagged:
 Pkg-ii-jj-kk (e.g. StoreGate-01-02-03)

 Major, minor and patch ids
 Non backwards compatible change to API implies change to major id
 Internal restructuring implies change to minor id

 Can also have bug-fix ids for bug-fix release branches (see later slides)

 E.g. StoreGate-01-02-03-04

David R. Quarrie: ATLAS Offline Release Process

5LCG Apps Area Meeting: 11 Jan 2006

ATLAS Offline Release Types
 Nightly builds

 Complete release built from most recent tags for each supported platform
 Kept in cycle of typically 7 so that developers have time to diagnose and fix

problems
 Managed by NICOS (Nightly Control System)

 Developer builds (e.g. 11.x.0)
 Stability or convergence builds every 3-4 weeks
 Limited testing, no patches created

 Production builds (e.g. 11.0.0)
 Every 3-6 months, generally associated with a major milestone

 E.g. data challenge, test beam, physics workshop
 Extensive testing and validation

 Bug-fix builds (e.g. 11.0.1)
 Bug fixes to production builds resulting from problems uncovered during more

extensive production running

David R. Quarrie: ATLAS Offline Release Process

6LCG Apps Area Meeting: 11 Jan 2006

Release Testing & Distribution
 Two test scaffolds

 ATNight
 Tests run in context of nightly builds as part of NICOS build procedure
 Restricted statistics; no Grid access
 ~70 unit and integration tests run

 Run Time Tester (RTT)
 More extensive tests on cluster at UCL (other instances being created)
 ~200 tests on 24 packages
 Grid access underway

 Distribution kits created for development, production and bug-fix builds
 Using pacman caches
 Currently only binary kits available - source kits available this month
 Goal is to use distribution kit for CERN installations as well as remote sites

 Extensive “KitValidation” test suite
 Includes all processing stages (generators, simulation, reconstruction, etc.)
 Components from this run both on ATNight & RTT test scaffolds

David R. Quarrie: ATLAS Offline Release Process

7LCG Apps Area Meeting: 11 Jan 2006

David R. Quarrie: ATLAS Offline Release Process

8LCG Apps Area Meeting: 11 Jan 2006

Tag Collector
 Web-based tool to manage

 Creation of new releases
 Specification of which packages and versions belong in a release
 API to extract set of packages and versions for a release

 Used by NICOS for nightly builds
 Management tools to control update access

 Role based
 Release coordinator, package manager(s)

 Based on Grenoble AMI DB framework

David R. Quarrie: ATLAS Offline Release Process

9LCG Apps Area Meeting: 11 Jan 2006

Tag Collector

David R. Quarrie: ATLAS Offline Release Process

10LCG Apps Area Meeting: 11 Jan 2006

David R. Quarrie: ATLAS Offline Release Process

11LCG Apps Area Meeting: 11 Jan 2006

Issues with existing system
 Full nightly build takes ~19 hours

 AFS instabilities caused us to make builds on local disk & copy to AFS
 Having to rsync CVS repository & copy to AFS contribute to total time

 But failures dropped from ~20% to <5%

 Use incremental builds to reduce build time
 Typically ~6-8 hours (but up to 19 hours if core packages changed)
 Do a full build every Saturday night

 Disk space becoming a problem
 Present disk layout doesn’t scale well with new platforms
 Reaching 20GB AFS volume size limit

 Problem with instability
 Changes to core packages immediately visible (and disruptive)
 Manual integration builds necessary

 Solution: Project-based builds

David R. Quarrie: ATLAS Offline Release Process

12LCG Apps Area Meeting: 11 Jan 2006

Project Dependencies & Sizes

AtlasReconstruction

AtlasAnalysis

AtlasCore

AtlasConditions

AtlasSimulation

AtlasTrigger

LCGCMT

Gaudi

AtlasEvent

73

150

108

182

170 142

88

<project>
<n>

<n> No.of leaf packages

20

39

AtlasOffline 5

David R. Quarrie: ATLAS Offline Release Process

13LCG Apps Area Meeting: 11 Jan 2006

Projects
 ATLAS Offline split into projects

 Packages associated with a single project

 Each can have it’s own independent development timeline

 Higher level projects can develop against stable versions of lower level ones

 Concerns about manual integration cascades - e.g.
 New version of lower level project to be integrated
 Initial testing restricted to project itself
 Discover bugs in lower level project during integration with next project up
 Requires new version of lower level project etc. etc.

 CMT provides support for projects
 Project package (same name as project itself)

 Specifies dependencies against other projects and project container package and version
 Project container package (<project>Release)

 Specifies top level container & leaf package versions

David R. Quarrie: ATLAS Offline Release Process

14LCG Apps Area Meeting: 11 Jan 2006

Tag Collector Support for Projects
 Multiple top level projects supported

 Further extensions to specify different CVS repository or CVS offset underway

 Releases associated with each project

 Each leaf package associated with a project
 Causes packages within e.g. the InnerDetector hierarchy to be associated with

different projects (AtlasSimulation, AtlasEvent, AtlasReconstruction, etc.)

 Each container package “belongs” to every project that has one or more of it’s
children leaf packages associated
 Where TC generates automatically the CMT requirements file specifying the set of

child packages belonging to each project

 Release coordinators per project & release

 Doesn’t yet provide support for project package
 Not yet possible to see or specify project version dependencies

 Does provide support for project container package
 Hierarchical autotagging

David R. Quarrie: ATLAS Offline Release Process

15LCG Apps Area Meeting: 11 Jan 2006

TC & Projects

David R. Quarrie: ATLAS Offline Release Process

16LCG Apps Area Meeting: 11 Jan 2006

Project Releases & Types
 Existing release types retained, but now per project

 Development. Snapshot with limited testing every 3-4 weeks
 Release X.Y.z (where bug-fixes can now be associated with development releases)

 Production. Intended for integration with other projects and possible production
 Release X.0.0

 Bug-fix. Bugs discovered by the production use or during project integration are fixed in these
 Release X.y.z (can be associated with both development & production releases)

 Nightly. Performed every night for each project. Releases kept in a cycle for several days but then
overwritten
 Corresponds to open (i.e. not yet existing) releases within the tag collector

 New types of nightly builds
 Standalone. Project specifies fixed versions of the project or projects it depends upon

 Supports development against a stable base of other projects
 Integration. Each project built against the corresponding nightly of the next project down in the project

dependency tree
 Supports bug-fixing across multiple projects simultaneously
 Within each such integration nightly, higher level projects don’t begin their build until

lower level ones have completed
 The nightly release cycle for all projects must be the same number of days
 Already supported by NICOS

David R. Quarrie: ATLAS Offline Release Process

17LCG Apps Area Meeting: 11 Jan 2006

Sets of Project Nightlies
 A maximum of 3 per project

 One integration nightly corresponding to an open bug-fix branch
 C.f. 11.0.3

 One integration nightly corresponding to an open development or production branch
 C.f. 11.1.0 or 12.0.0

 One standalone nightly corresponding to the project development head
 New for project builds
 Supports development against stable versions of other projects
 Allows a project to embark on a potentially disruptive development cycle without

disrupting other projects that depend upon it
 Once this project developers think it is stable enough for others to try out, a project

integration phase can be started, which could be staged to minimize overall disruption

 The first two are essentially identical to monolithic release situation

 The 3rd one adds “stable development”

 Note that this is a worst case, and not necessary at all times
 But it might be simplest to keep these running even if they’re not active

David R. Quarrie: ATLAS Offline Release Process

18LCG Apps Area Meeting: 11 Jan 2006

What does this look like for Developers?
 On Developers Home view for each open release the following options for

applying new tags to a package (MyPackage) in the AtlasCore package:
 AtlasCore/3.0.3/MyPackage-01-02-03 [AtlasOffline/12.0.1]

 AtlasCore/3.1.1/MyPackage-01-02-03 [AtlasOffline/12.1.0]

 AtlasCore/3.2.0/MyPackage-01-02-03 [standalone]

 AtlasCore/3.0.3 is the project version that’s being integrated into release 12.0.1
 AtlasCore/3.1.0 is being integrated into release 12.1.0
 AtlasCore/3.2.0 is the standalone development version

David R. Quarrie: ATLAS Offline Release Process

19LCG Apps Area Meeting: 11 Jan 2006

Status
 Project builds being built in

parallel to monolithic builds
 Package tags swept every night

from open AtlasRelease monolithic
releases to corresponding projects

 Plan is to terminate monolithic
releases after 11.2.0
 19 Jan 2006

 Additional Tag Collector support
due by end of March
 View & set project dependencies

David R. Quarrie: ATLAS Offline Release Process

20LCG Apps Area Meeting: 11 Jan 2006

Summary
 ATLAS relies heavily on tools and automation for release building and testing

 Tag Collector, NICOS, CMT

 Hierarchy of release builds
 Nightly, development, production, bug-fix

 Monolithic release has problems with scaling to multiple platforms and
instability

 Decomposition into projects designed to address these

 Standalone and integration nightlies to address integration cascade concerns

 Tool project support almost all in place

 Full conversion to projects scheduled for 19 Jan

