
LCG Apps Area Meeting
11 January 2006

ATLAS Offline Release Process

David R. Quarrie
LBNL

DRQuarrie@lbl.gov

David R. Quarrie: ATLAS Offline Release Process

2LCG Apps Area Meeting: 11 Jan 2006

ATLAS CVS Structure
 Single CVS repository for

 ATLAS Offline Release
 Offline software and trigger algorithms

 ATLAS Production system
 Python job submission system

 User repositories
 For individual users

 Group repositories
 For physics working groups

 High Level Trigger infrastructure
 Glue for using offline software in online trigger environment

 Other CVS repositories for
 Gaudi

 Common framework shared with LHCb and others
 ATLAS Online and Trigger/Data Acquisition

 Focus of this talk is the ATLAS Offline Release

David R. Quarrie: ATLAS Offline Release Process

3LCG Apps Area Meeting: 11 Jan 2006

ATLAS Offline
 Approximately 1124 CVS modules (packages)

 152 containers
 971 leaf

 Contain source code or act as glue to external software

 Container hierarchy for commit & tag management
 Hierarchy by detector

 E.g. Inner Detector, Muon Spectrometer
 Each detector has containers for e.g. Simulation, Reconstruction, Reco EDM, etc.

 Hierarchy by subsystem
 E.g. Control (framework), Database

 Hierarchy by processing stage
 E.g. Simulation, Reconstruction

 Single container hierarchy cannot adequately reflect overall structure

David R. Quarrie: ATLAS Offline Release Process

4LCG Apps Area Meeting: 11 Jan 2006

CMT & Tags
 ATLAS uses CMT for configuration management

 Each package has a requirements file that specifies
 Entities (libraries, plug-ins, applications) built from sources within this package

 Can include e.g. Reflex dictionary generation
 Other packages that this package depends upon (e.g. for header files, libraries)
 Information exported to clients (header files, libraries, configuration variables)
 Run-time environment variables
 Special make targets (e.g. for building and running component tests

 Some packages act as interface/glue to external software

 Each package tagged:
 Pkg-ii-jj-kk (e.g. StoreGate-01-02-03)

 Major, minor and patch ids
 Non backwards compatible change to API implies change to major id
 Internal restructuring implies change to minor id

 Can also have bug-fix ids for bug-fix release branches (see later slides)

 E.g. StoreGate-01-02-03-04

David R. Quarrie: ATLAS Offline Release Process

5LCG Apps Area Meeting: 11 Jan 2006

ATLAS Offline Release Types
 Nightly builds

 Complete release built from most recent tags for each supported platform
 Kept in cycle of typically 7 so that developers have time to diagnose and fix

problems
 Managed by NICOS (Nightly Control System)

 Developer builds (e.g. 11.x.0)
 Stability or convergence builds every 3-4 weeks
 Limited testing, no patches created

 Production builds (e.g. 11.0.0)
 Every 3-6 months, generally associated with a major milestone

 E.g. data challenge, test beam, physics workshop
 Extensive testing and validation

 Bug-fix builds (e.g. 11.0.1)
 Bug fixes to production builds resulting from problems uncovered during more

extensive production running

David R. Quarrie: ATLAS Offline Release Process

6LCG Apps Area Meeting: 11 Jan 2006

Release Testing & Distribution
 Two test scaffolds

 ATNight
 Tests run in context of nightly builds as part of NICOS build procedure
 Restricted statistics; no Grid access
 ~70 unit and integration tests run

 Run Time Tester (RTT)
 More extensive tests on cluster at UCL (other instances being created)
 ~200 tests on 24 packages
 Grid access underway

 Distribution kits created for development, production and bug-fix builds
 Using pacman caches
 Currently only binary kits available - source kits available this month
 Goal is to use distribution kit for CERN installations as well as remote sites

 Extensive “KitValidation” test suite
 Includes all processing stages (generators, simulation, reconstruction, etc.)
 Components from this run both on ATNight & RTT test scaffolds

David R. Quarrie: ATLAS Offline Release Process

7LCG Apps Area Meeting: 11 Jan 2006

David R. Quarrie: ATLAS Offline Release Process

8LCG Apps Area Meeting: 11 Jan 2006

Tag Collector
 Web-based tool to manage

 Creation of new releases
 Specification of which packages and versions belong in a release
 API to extract set of packages and versions for a release

 Used by NICOS for nightly builds
 Management tools to control update access

 Role based
 Release coordinator, package manager(s)

 Based on Grenoble AMI DB framework

David R. Quarrie: ATLAS Offline Release Process

9LCG Apps Area Meeting: 11 Jan 2006

Tag Collector

David R. Quarrie: ATLAS Offline Release Process

10LCG Apps Area Meeting: 11 Jan 2006

David R. Quarrie: ATLAS Offline Release Process

11LCG Apps Area Meeting: 11 Jan 2006

Issues with existing system
 Full nightly build takes ~19 hours

 AFS instabilities caused us to make builds on local disk & copy to AFS
 Having to rsync CVS repository & copy to AFS contribute to total time

 But failures dropped from ~20% to <5%

 Use incremental builds to reduce build time
 Typically ~6-8 hours (but up to 19 hours if core packages changed)
 Do a full build every Saturday night

 Disk space becoming a problem
 Present disk layout doesn’t scale well with new platforms
 Reaching 20GB AFS volume size limit

 Problem with instability
 Changes to core packages immediately visible (and disruptive)
 Manual integration builds necessary

 Solution: Project-based builds

David R. Quarrie: ATLAS Offline Release Process

12LCG Apps Area Meeting: 11 Jan 2006

Project Dependencies & Sizes

AtlasReconstruction

AtlasAnalysis

AtlasCore

AtlasConditions

AtlasSimulation

AtlasTrigger

LCGCMT

Gaudi

AtlasEvent

73

150

108

182

170 142

88

<project>
<n>

<n> No.of leaf packages

20

39

AtlasOffline 5

David R. Quarrie: ATLAS Offline Release Process

13LCG Apps Area Meeting: 11 Jan 2006

Projects
 ATLAS Offline split into projects

 Packages associated with a single project

 Each can have it’s own independent development timeline

 Higher level projects can develop against stable versions of lower level ones

 Concerns about manual integration cascades - e.g.
 New version of lower level project to be integrated
 Initial testing restricted to project itself
 Discover bugs in lower level project during integration with next project up
 Requires new version of lower level project etc. etc.

 CMT provides support for projects
 Project package (same name as project itself)

 Specifies dependencies against other projects and project container package and version
 Project container package (<project>Release)

 Specifies top level container & leaf package versions

David R. Quarrie: ATLAS Offline Release Process

14LCG Apps Area Meeting: 11 Jan 2006

Tag Collector Support for Projects
 Multiple top level projects supported

 Further extensions to specify different CVS repository or CVS offset underway

 Releases associated with each project

 Each leaf package associated with a project
 Causes packages within e.g. the InnerDetector hierarchy to be associated with

different projects (AtlasSimulation, AtlasEvent, AtlasReconstruction, etc.)

 Each container package “belongs” to every project that has one or more of it’s
children leaf packages associated
 Where TC generates automatically the CMT requirements file specifying the set of

child packages belonging to each project

 Release coordinators per project & release

 Doesn’t yet provide support for project package
 Not yet possible to see or specify project version dependencies

 Does provide support for project container package
 Hierarchical autotagging

David R. Quarrie: ATLAS Offline Release Process

15LCG Apps Area Meeting: 11 Jan 2006

TC & Projects

David R. Quarrie: ATLAS Offline Release Process

16LCG Apps Area Meeting: 11 Jan 2006

Project Releases & Types
 Existing release types retained, but now per project

 Development. Snapshot with limited testing every 3-4 weeks
 Release X.Y.z (where bug-fixes can now be associated with development releases)

 Production. Intended for integration with other projects and possible production
 Release X.0.0

 Bug-fix. Bugs discovered by the production use or during project integration are fixed in these
 Release X.y.z (can be associated with both development & production releases)

 Nightly. Performed every night for each project. Releases kept in a cycle for several days but then
overwritten
 Corresponds to open (i.e. not yet existing) releases within the tag collector

 New types of nightly builds
 Standalone. Project specifies fixed versions of the project or projects it depends upon

 Supports development against a stable base of other projects
 Integration. Each project built against the corresponding nightly of the next project down in the project

dependency tree
 Supports bug-fixing across multiple projects simultaneously
 Within each such integration nightly, higher level projects don’t begin their build until

lower level ones have completed
 The nightly release cycle for all projects must be the same number of days
 Already supported by NICOS

David R. Quarrie: ATLAS Offline Release Process

17LCG Apps Area Meeting: 11 Jan 2006

Sets of Project Nightlies
 A maximum of 3 per project

 One integration nightly corresponding to an open bug-fix branch
 C.f. 11.0.3

 One integration nightly corresponding to an open development or production branch
 C.f. 11.1.0 or 12.0.0

 One standalone nightly corresponding to the project development head
 New for project builds
 Supports development against stable versions of other projects
 Allows a project to embark on a potentially disruptive development cycle without

disrupting other projects that depend upon it
 Once this project developers think it is stable enough for others to try out, a project

integration phase can be started, which could be staged to minimize overall disruption

 The first two are essentially identical to monolithic release situation

 The 3rd one adds “stable development”

 Note that this is a worst case, and not necessary at all times
 But it might be simplest to keep these running even if they’re not active

David R. Quarrie: ATLAS Offline Release Process

18LCG Apps Area Meeting: 11 Jan 2006

What does this look like for Developers?
 On Developers Home view for each open release the following options for

applying new tags to a package (MyPackage) in the AtlasCore package:
 AtlasCore/3.0.3/MyPackage-01-02-03 [AtlasOffline/12.0.1]

 AtlasCore/3.1.1/MyPackage-01-02-03 [AtlasOffline/12.1.0]

 AtlasCore/3.2.0/MyPackage-01-02-03 [standalone]

 AtlasCore/3.0.3 is the project version that’s being integrated into release 12.0.1
 AtlasCore/3.1.0 is being integrated into release 12.1.0
 AtlasCore/3.2.0 is the standalone development version

David R. Quarrie: ATLAS Offline Release Process

19LCG Apps Area Meeting: 11 Jan 2006

Status
 Project builds being built in

parallel to monolithic builds
 Package tags swept every night

from open AtlasRelease monolithic
releases to corresponding projects

 Plan is to terminate monolithic
releases after 11.2.0
 19 Jan 2006

 Additional Tag Collector support
due by end of March
 View & set project dependencies

David R. Quarrie: ATLAS Offline Release Process

20LCG Apps Area Meeting: 11 Jan 2006

Summary
 ATLAS relies heavily on tools and automation for release building and testing

 Tag Collector, NICOS, CMT

 Hierarchy of release builds
 Nightly, development, production, bug-fix

 Monolithic release has problems with scaling to multiple platforms and
instability

 Decomposition into projects designed to address these

 Standalone and integration nightlies to address integration cascade concerns

 Tool project support almost all in place

 Full conversion to projects scheduled for 19 Jan

