

Enabling Grids for E-sciencE

AMGA Use Cases

Tony Calanducci

NA4 Generic Applications Meeting January 10th, 2006

www.eu-egee.org

INFSO-RI-508833

AMGA for GIS datatypes metadata

gMOD

- DLibrary goal is to create a Multimedia Contents Management System on the Grid
- Examples of Multimedia Contents handled by DLibrary:
 - Images
 - Videos
 - Music
 - Office Documents (PPT, Word, Excel)
 - E-Mails
 - PDF
 -
- DLibrary is a repository of well structured and uniform metadata for files present on Storage Elements
- Users and jobs can easily submit new contents and look later for them in an easy, fast and secure way through the Grid
- We choose AMGA to archive metadata for files stored in SEs and to answer users' and jobs' queries

DLibrary use cases

- Example 1:
 - An user needs to find all the PowerPoint Presentation about Data Management System in 2006 run by Uncle Sam (fantasy name)
- Example 2 (Google for Storage):
 - a job behaves as a "storage crawler": it scans all the files stored in Storage Elements and publishes their related specific information into DLibrary for later searches through their attributes.
- Example 3:
 - A user wants to look for all the movies in which Jennifer Aniston performed, produced in 2004; or find all the songs of Led Zeppelin that last for more than 6 minutes.
- Example 4:
 - A doctor wants to retrieve all the articles and presentations about lung cancer and download some lung X-ray images to be printed in his article for a scientific magazine

- **Definitions:**
 - An entry represents a document archived in a SE.
 - Attributes are the entries' related information (ex. FileName, Type, SubmissionDate, Keywords, Comment, ...)
 - Collections are a set of entries sharing the same attributes (called also schema). In a file system analogy, they are directories.
- DLibrary is built using the following collections:
 - /DLibrary contains generic information per each entry
 - /DLTypes contains associations between document types and "special features" collection path
 - /DLAudio, /DLImage, /DLVideo, /DLPPT, /EGEEPPT, /DLDoc are some examples of "special features" collections
 - /DLKeys is used to store Decryption Keys

Collection /DLibrary Attributes Entry Names FileName PathName Submitter Type /grid/gilda/calanducci DedicatoAte.mp3 4ffaffc8-26e7-4826-b460-3d5bf08081a4 Audio Tony Calanducci ardizzonelarocca_is_231005.ppt.gpg 00454dca-a269-4b93-8a45-c4012af05600 /grid/gilda/calanducci/ EGEEDOC Tony Calanducci EGEE

/DLibrary (continuum)					
		Attributes			
SubmissionDate	DecryptKeyDir	Description	Keywords	CreationDate	
2006-01-05 00:00:00		Canzone delle vibrazioni che ha ricevuto un enorme successo tra i teenagers nel 2003	Vibrazioni	2004-02-05 00:00:00	
2005-01-05 16:44:22	/DLKeys/gildateam	gLite Information System	R-GMA, RGMA, BDII, IS	2005-10-05 23:40	

INFSO-RI-508833

Entry Example (II)

Enabling Grids for E-sciencE

Collection	/DLTypes
Entry names	Attributes
Entry names	Path (refers to a collection)
Audio	/DLAudio
Image	/DLImage
Video	/DLVideo
Documents	/DLDOC
PowerPoint	/DLPPT
EGEEDOC	/EGEEPPT

Collection	/DLKeys/gildateam		
Entry nomes	Attributes		
Entry names	Passphrase		
00454dca-a269-4b93-8a45- c4012af05600	ardizzo		

Collection	/EGEEPPT							
	Attributes							
Entry names	Title	Runtime	Author	Туре	Date	Event	Speaker	Торіс
00454dca-a269- 4b93-8a45- c4012af05600	Information Systems	00:30:00	Valeria Ardizzione, Giuseppe La Rocca	Theorical	2005-10-23	4 th EGEE Conferen ce	Giuseppe La Rocca, Valeria Ardizzone	R-GMA, BDII

Collection	/DLAudio					
Entry nomeo	Attributes					
Entry names	SongTitle	Duration	Album	Genre	Singer	Format
4ffaffc8-26e7-4826- b460-3d5bf08081a4	Dedicato A Te	00:03:27	Dedicato A Te	Рор	Le Vibrazioni	MP3

INFSO-RI-508833

- 3 kinds of users:
 - a LibraryManager can create new DLibrary Document Types
 - a LibrarySubmitter can add new entries
 - authorized VO members can browse and search the library.
 - LibraryManagers can also grant VO users submission rights
- DLibrary provides an initial level of cryptography for data in SEs: a symmetric passphrase can be stored besides regular attributes per entry in DLibrary collections.
 - LibrarySubmitters can authorize VO users to access decryption keys
- All this was easily implemented thanks to the powerful and fine-grained user authorization and ACL features of AMGA

DLibrary Authorization

Enabling Grids for E-sciencE

Query> acl show	/DLibrary/
-----------------	------------

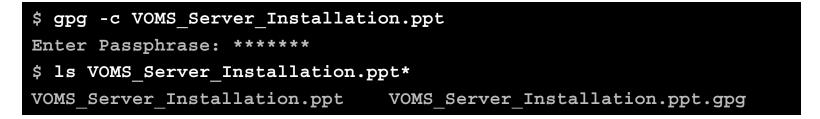
- >> LibraryManager rwx
- >> LibraryManager:libsubmitters rwx
- >> gilda:users rx

Query> acl show /DLAudio

- >> LibraryManager rwx
- >> LibraryManager:libsubmitters rwx
- >> gilda:users rx

Query> acl show DLTypes

- >> LibraryManager rwx
- >> LibraryManager:libsubmitters rx
- >> gilda:users rx


```
Query> whoami
>> LibrarySubmitter
Query> acl show /DLKeys/gildateam
>> LibrarySubmitter rwx
>> LibrarySubmitter:gildateam rx
Query> grp show gildateam
>> tony
>> valeria
>> giuseppe
>> emidio
Query> user listcred tony
>>
>> 'C = IT, O = GILDA, OU = Personal
Certificate, L = INFN Catania, CN =
Tony Calanducci, emailAddress =
tony.calanducci@ct.infn.it'
```

CGCC Example: EGEE PPT submission

Enabling Grids for E-sciencE

Log into your UI and locate the file you want to upload to a SE.

The use GPG (as an example) to encrypt it using a symmetric passphrase:

Upload the encrypted file to a SE

```
$ lcg-cr -v --vo gilda -d grid009.ct.infn.it
         -1 lfn:/grid/gilda/calanducci/EGEE/VOMS server Installation.ppt.gpg
         file://$PWD/VOMS Server Installation.ppt.gpg
Using grid catalog type: lfc
Source URL: file:/home/tcaland/DLibrary Docs/EGEEPPT/VOMS Server Installation.ppt.gpg
File size: 657042
VO name: gilda
Destination specified: grid009.ct.infn.it
Destination URL for copy: gsiftp://grid009.ct.infn.it/flatfiles/SE00/gilda/generated/2006-
01-07/file24151089-8bf2-499a-9ca0-1b0120fled69
Alias registered in Catalog:
lfn:/grid/gilda/calanducci/EGEE/VOMS server Installation.ppt.gpg
                                            0.00 KB/sec inst
                        0.00 KB/sec avg
           0 bytes
Transfer took 4130 ms
Destination URL registered in Catalog:
sfn://grid009.ct.infn.it/flatfiles/SE00/gilda/generated/2006-01-07/file24151089-8bf2-499a-
9ca0-1b0120f1ed69
guid:1f6e9ac6-5c86-4599-b03b-560e0e7ea38a
```


Initialize your VOMS proxy asking for LibrarySubmitter Role

\$ voms-proxy-init --voms gilda:/gilda/Role=LibrarySubmitter

\$ voms-proxy-info -fqan | grep LibrarySubmitter

/gilda/Role=LibrarySubmitter/Capability=NULL

Edit your .mdclient.config setting Login=gilda:/gilda/Role^=LibrarySubmitter Log into AMGA using mdclient command line tool

> \$ mdclient Connecting to wn1-test.ct.infn.it:8899... ARDA Metadata Server 1.0.0 Query> whoami >> LibrarySubmitter

Example: EGEE PPT submission (III)

Examp Enabling Grids for E-science

Create a new entry inside /DLibrary collection and one with the related "special features" into /EGEEPPT using the GUID obtained by lcg-cr as entry name

Query> addentry /DLibrary/1f6e9ac6-5c86-4599-b03b-560e0e7ea38a FileName VOMS_server_Installation.ppt.gpg PathName /grid/gilda/calanducci/EGEE Type EGEEDOC Submitter 'Tony Calanducci' SubmissionDate '2006-01-07 18:44' DecryptKeyDir '/DLKeys/gildateam' Description 'VOMS Server installation tutorial done in Venezuela' Keywords 'VOMS Server' CreationDate '2005-10-08 18:28' Query> addentry /EGEEPPT/1f6e9ac6-5c86-4599-b03b-560e0e7ea38a Title 'Installing a gLite VOMS Server' Runtime '01:30:00' Author 'ziggy, Giorgio' Type 'Admin, Installation' Date '2005-11-21 11:00' Event 'First Latin American Workshop for Grid Administrators' Speaker 'Emidio Giorgio' Topic 'VOMS'

Add the passphrase to the collection with ACLs listing people you want to give access to

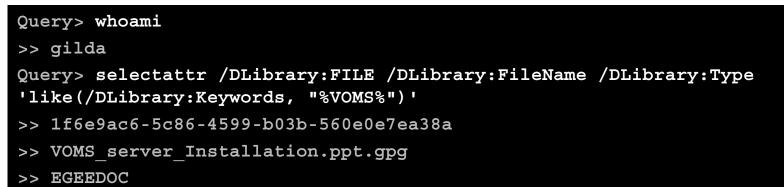
Query> addentry /DLKeys/gildateam/1f6e9ac6-5c86-4599-b03b-560e0e7ea38a
Passphrase 'EGEE2006'
Query> acl_show /DLKeys/gildateam
>> LibrarySubmitter rwx
>> LibrarySubmitter:gildateam rx
Query> grp_show gildateam
>> tony
>> tony
>> valeria
>> giuseppe
>> emidio

INFSO-RI-508833

Example: DLibrary queries

Enabling Grids for E-sciencE

Initialize your VOMS proxy asking to be member of the gilda VO


Edit your .mdclient.config setting Login=NULL (user will be retrieved from your

proxy extensions) Log into AMGA

eGee

Suppose we want to look for all contents about VOMS

Now let's find out in which collection EGEEDOC attributes are stored

Query> getattr /DLTypes/EGEEDOC Path

- >> EGEEDOC
- >> /EGEEPPT

Example: DLibrary queries (II)

Enabling Grids for E-sciencE

Now we can make a JOIN between the 2 tables to extract all the information we like

Query> selectattr /DLibrary:FILE /DLibrary:FileName /DLibrary:Description /EGEEPPT:Author /EGEEPPT:Title /EGEEPPT:Event '/DLibrary:FILE=/EGEEPPT:FILE and like(/DLibrary:Keywords, "%VOMS%")` >> 1f6e9ac6-5c86-4599-b03b-560e0e7ea38a >> VOMS_server_Installation.ppt.gpg >> VOMS Server installation tutorial done in Venezuela >> ziggy, Giorgio >> Installing a gLite VOMS Server

>> First Latin American Workshop for Grid Administrators

Let's see where the passphrase to decrypt the file is stored

Query> selectattr /DLibrary:FILE DecryptKeyDir 'FILE="1f6e9ac6-5c86-4599-b03b-560e0e7ea38a"'

>> 1f6e9ac6-5c86-4599-b03b-560e0e7ea38a

>> /DLKeys/gildateam

eeee

But ...

Query> getattr /DLKeys/gildateam/1f6e9ac6-5c86-4599-b03b-560e0e7ea38a Passphrase

Error 4: Permission denied

Because gilda is not a member of the gildateam group

INFSO-RI-508833

Example: DLibrary queries (III)

Exal Enabling Grids for E-science

Set Login = tony into .mdclient.config. I will be authenticated correctly because my DN is mapped onto the AMGA user tony

Query> whoami
>> tony
Query> grp_member
>> gilda:users
>> LibrarySubmitter:gildateam
Query> getattr /DLKeys/gildateam/1f6e9ac6-5c86-4599-b03b-560e0e7ea38a
Passphrase
>> lf6e9ac6-5c86-4599-b03b-560e0e7ea38a
>> EGEE2006

Yet another example of a query to look for Audio contents:

Query> selectattr /DLibrary:FileName SubmissionDate Submitter /DLAudio:SongTitle Singer Duration Genre '/DLibrary:FILE=/DLAudio:FILE'

- >> DedicatoAte.mp3
- >> 2006-01-05 00:00:00
- >> Tony Calanducci
- >> Dedicato A Te
- >> Le Vibrazioni
- >> 00:03:27
- >> Pop

Accessing AMGA

- TCP Streaming Front-end
 - mdcli & mdclient and C++ API (md_cli.h, MD_Client.h)
 - Java Client API and command line mdjavaclient.sh & mdjavacli.sh (also under Windows !!)
 - Python Client API

SOAP Frontend (WSDL)

- C++ gSOAP
- AXIS (Java)
- ZSI (Python)

• AMGA Datatypes

	$\mathbf{PostgreSQL}$	MySQL	Oracle	\mathbf{SQLite}	Python
int	integer	int	number(38)	int	int
float	double precision	double precision	float	float	float
varchar(n)	character varying(n)	character varying(n)	varchar2(n)	varchar(n)	string
timestamp	timestamp w/o TZ	datetime	timestamp(6)	unsupported	time (unsupp.)
text	text	text	long	text	string
numeric(p,s)	numeric(p,s)	numeric(p,s)	numeric(p,s)	numeric(p,s)	float

- Using the above datatypes you are sure that your metadata can be easily moved to all supported back-ends
- If you do not care about DB portability, you can use, in principle, as entry attribute type ALL the datatypes supported by the backend, even the more esoteric ones (PostgreSQL Network Address type or Geometric ones)
- We played a little bit with GIS Datatype offered by MySQL 5

Example with ESR data

Enabling Grids for E-sciencE

We created a /ESR/opera_nno collection asking AMGA to use the MyISAM table engine

Query> listattr /ESR/opera nno	>> Lon
>> Dataset	>> numeric(8,2)
>> varchar(30)	>> Orbit
>> File_Name	>> int(5)
>> varchar(50)	>> Proc_centre
>> Footprint	>> varchar(50)
>> multipolygon	>> Proc_date
>> Lat	>> timestamp
>> numeric(8,2)	>> Start_Date
>> Level	>> timestamp
>> varchar(5)	>> Stop_Date
	>> timestamp
	• • •

We used *insert* command that evaluates all inserted values:

insert sameEntryName Dataset "GOME" Level 2 Version "v1.1" Orbit 25421
File_Name "/grid/esr/gome/utv/2000/03/00301000.utv" Start_Date '"2000-02-29
00:01:00.0"' Stop_Date '"2000-02-29 00:58:00.0"' Footprint
'MPolyFromText("MULTIPOLYGON(((82.96 -59.12,75.95 -89.07,75.95 -89.07,76.46 94.77,76.84 -100.85,77.07 -107.21,77.13 -115.34,77.00 -121.80,76.72 128.08,76.30 -134.03,75.74 -139.59,75.07 -144.70,74.30 -149.36,80.26 179.07,80.26 -179.07,81.52 -174.78,82.71 -169.12,83.81 -161.42,84.76 150.74,85.47 -136.17,85.80 -117.93,85.57 -94.31,84.94 -78.84,84.03 67.39,82.96 -59.12)))")' Proc_centre "EGEE" Proc_date '"2005-10-14
13:20:00.0"' File_input "00301000.lv1" Proc_description '"Algorithm: utv"'

eGee

Sample queries

Let's check if the entry was properly inserted (we need to use AsText() to decode a MultiPolygon):

Query> selectattr /ESR/opera_nno:File_Name AsText(/ESR/opera_nno:Footprint) ''
>> /grid/esr/gome/utv/2000/03/00301000.utv

>> MULTIPOLYGON(((82.96 -59.12,75.95 -89.07,75.95 -89.07,76.46 -94.77,76.84 100.85,77.07 -107.21,77.13 -115.34,77 -121.8,76.72 -128.08,76.3 -134.03,75.74 139.59,75.07 -144.7,74.3 -149.36,80.26 -179.07,80.26 -179.07,81.52 -174.78,82.71
-169.12,83.81 -161.42,84.76 -150.74,85.47 -136.17,85.8 -117.93,85.57 94.31,84.94 -78.84,84.03 -67.39,82.96 -59.12)))

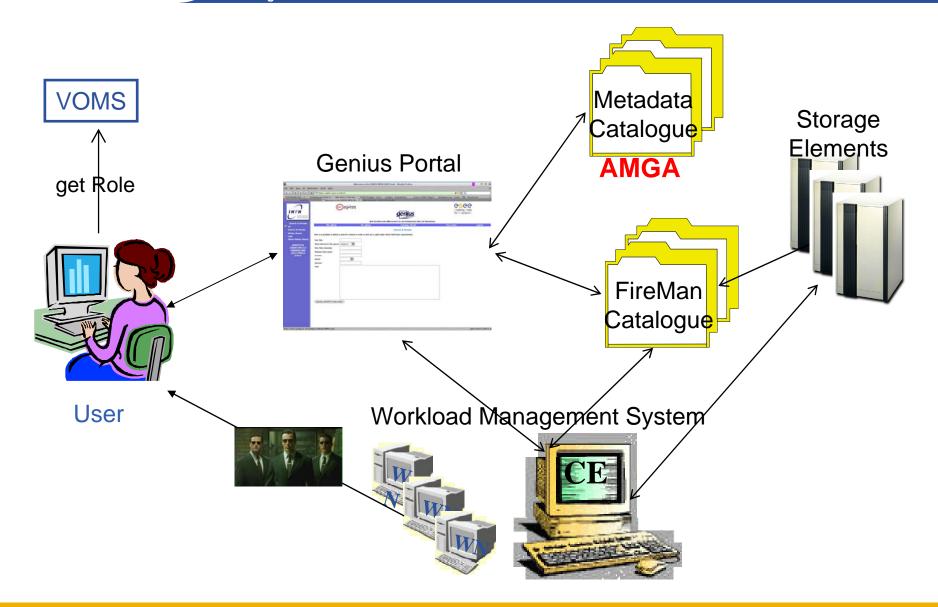
We want to look for a Polygon that cointains a given point:

```
Query> selectattr /ESR/opera_nno:File_Name /ESR/opera_nno:Start_Date
/ESR/opera_nno:Stop_Date 'Contains(/ESR/opera_nno:Footprint,
GeomFromText("POINT(82.96 -59.12)"))'
>> /grid/esr/gome/utv/2000/03/00301000.utv
>> 2000-02-29 00:01:00
>> 2000-02-29 00:58:00
```

- As a summary, the following functions work: GeomFromText(), MPolyFromText(), Contains(), AsText()
- In principle PostgreSQL+PostGIS would also work but this is not tested.

INFSO-RI-508833

egee


- gMOD provides a Video-On-Demand service
- User chooses among a list of video and the chosen one is streamed in real time to the video client of the user's workstation
- For each movie a lot of details (Title, Runtime, Country, Release Date, Genre, Director, Case, Plot Outline) are stored and users can search a particular movie querying on one or more attributes
- Two kind of users can interact with gMOD: TrailersManagers that can administer the db of movies (uploading new ones and attaching metadata to them); GILDA VO users (guest) can browse, search and choose a movie to be streamed.

- Built on top of gLite services:
- Storage Elements, sited in different place, physically contain the movie files
- FireMan, the File Catalogue, keeps track in which Storage Element a particular movie is located
- AMGA is the repository of the detailed information for each movie, and makes possible queries on them
- The Virtual Organization Membership Service (VOMS) is used to assign the right role to the different users
- The Workload Management System (WMS) is responsible to retrieve the chosen movie from the right Storage Element and stream it over the network down to the user's desktop or laptop

Enabling Grids for E-sciencE

eGee

Enabling Grids for E-sciencE

gMOD is accesible through the Genius Portal (https://glite-tutor.ct.infn.it

INFSO-RI-508833

Thanks for the attention

INFSO-RI-508833