

Fusion in the GRID (na4-egeell)

Francisco Castejón francisco.castejon@ciemat.es CIEMAT

As coordinator of Fusion-GRID in NA4: SW-Federation (CIEMAT, BIFI, UCM, INTA -Spain-), Russian Federation (Kurchatov Institute -Russia-), CEA (France), ENEA (Italy), EFDA (EU), Korea (KISTI)

Motivation: Fusion on the GRID. > Strategy. > Applications: Computing in Plasma Physics. > Future Applications on the grid. > Data storage and handling. > Partners. > Final Remarks.

Motivation

- Large Nuclear Fusion installations: International Cooperation among a lot of Institutes.
- Senerate ~ 1-10 GB/sec. Less than 30% of data goes into processing.
- > Distributed data storage and handling needed.
- Massive Distributed Calculation: A new way of solving problems. (Problems still without solution).
- > Fusion community (Science and Technology) needs new IT approaches to increase research productivity.

Data Acquisition and Storage (GRID)

Data Analysis and Reduction:

Simulation: Large codes in different platforms (Grid, Supercomputers)

Decision for present/next shot

ITER Partners

Princeton Garching Moscow Naka Midnight 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11

Seoul Korean Participant Team Beijing Chinese Participant Team

> Princeton US Participant Team

ELE. Barcelona Garching Joint Work Site International Team European Participant Team

Moscow/St.Petersburg Russian Participant Team

Naka Joint Work Site International Team Japanese Participant Team

Distributed Participation. Data access. Remote Control Rooms?

International Tokamak (ITPA) and Stellarator (SIA) collaborations.

Russia:

T-10 (Kurchatov) Globus (loffe) T-11M (TRINITI) L-2 (Gen. Inst. Phys.) EGEE Project

USA: Alcator C-Mod (MIT) DIII-D (San Diego) NSTX (Princeton) NCSX (Princeton) HSX (Wisconsin) QPS (Oak-Ridge) USA Fusion Grid (GLOBUS, MSPLUS) EU: JET (EFDA) ASDEX (Ger.) **TORE SUPRA (Fran.)** MAST (UK) TEXTOR (Ger.) TCV (Switz.) FTU (Italy) W7-X (Ger.) TJ-II (Spain) **EGEE Project**

NA4-Catania, 2006

Japan: JT-60 (Naka) LHD (Toki) CHS (Nagoya) H-J (Kyoto) GRID Project ?

China, Brazil, Korea, India: KSTAR (Korea) TCBRA (Bra.) H-7 (China) U2A (China) SST1 (India) EGEE Project

International Experimental Thermonuclear Reactor (ITER) project

FUSION GRID as a prototype of ITER GRID

Joint collaboration requires COMPATIBILITY

Identical representation of data bases.
Identical graphical interfaces.
Identical standards of codes for data processing and simulations.
Identical programming languages.
Identical Tool kit for codes development.

Communications

Remote Participation tools:

Data Access. Local Visualization. Video Conferences and Chats. Remote Control. Programming via web. SECURITY & ROBUSTNESS

>AccessGRID for Videoconferencing

VRVS is also used

Scientific Coordination of JET from DIID

Remote Participation from JET to DIII-D

Strategy

> Enabling mail list and web page.

> Computing: > Identify common Codes suitable for GRID. (Ongoing) > Adapt codes to the GRID. (Ongoing) > Set up VO > Production phase. Data handling: Define strategies for data storage. & database organization. Protocol for data Access.

Standard SCADA (Improve MSPLUS?)

COMPUTING in the GRID: Present Applications

>Transport and Kinetic Theory: Monte Carlo Codes.

> Multiple Ray Tracing: e. g. TRUBA.> Stellarator Optimization: VMEC

> Following independent particle orbits in the plasma: $\vec{V}_D = \frac{\vec{E} \times \vec{B}}{B^2} + \frac{m}{2q} (2v^2 - v_\perp^2) \frac{\vec{B} \times \nabla |\vec{B}|}{B^3}$

> Typically 30×10^6 ions followed.

- Montecarlo techniques: Particles distributed according to experimental density and ion temperature profiles (Maxwellian distribution function)
- > SUITABLE PROBLEM FOR CLUSTER AND GRID TECHNOLOGIES

Kinetic Transport

Example of orbit in the real 3D TJ-II Geometry (single PE).

~1 GBy data, 24 h x 512 PE

Distribution function of parallel velocity at a given position (Data Analysis).

funcion de distribucion

Kinetic transport

No collisions: 0.5 ms of trajectory takes 1 sec. CPU..

Collisions: 1 ms of trajectory takes 4 sec CPU. Particle life: 150 - 200 ms. Single particle ~ 10 min.

Necessary statistics for TJ-II 10⁷ particles.

Multiple Ray Tracing: TRUBA

Beam Simulation:

Bunch of rays with beam waist far from the critical layer (100-200 rays)

Single Ray (1 PE): Hamiltonian Ray Tracing Equations.

Bunch of rays with beam waist close to the critical layer (100-200 rays) x (100-200 wave numbers) ~10⁵ GRID PROBLEM

TRUBA: Multiple Ray Tracing

Different results with the two approximations.

(Also useful tool for looking for Optimum Launching Position in complex devices)

TRUBA for EBW: Collaboration between IOFAN and CIEMAT. Useful for all Institutes with EBW heating (Culham, Princeton, Greifswald, CIEMAT,...)

TRUBA: Multiple Ray Tracing

TRUBA for EBW:

- Cylinder geometry: A single Non-relativistic ray (tens of sec.)

-Real geometry in TJ-II:Coming from a supercomputer (VMEC).

- A single Non-relativistic ray (about 18').

- A single relativistic ray (about 40').
- Some problems with Geometry libraries.

Stellarator optimization

Coils producing field confining the plasma may be optimised numerically by variation of the field parameters.

A lot of different Magnetic Configurations operating nowadays. OPTIMIZATION NECESITY BASED ON KNOWLEDGE OF STELLARATOR PHYSICS. Every variant computed on a separate processor (~10') VMEC (Variational Momentum Equilibrium Code)

120 Fourier parameters are varied.

$$\vec{B}(\boldsymbol{\psi},\boldsymbol{\theta},\boldsymbol{\varphi}) = \sum \vec{B}_{m,n}(\boldsymbol{\psi})e^{i(m\boldsymbol{\theta}-n\boldsymbol{\varphi})}$$

$$R(\psi) = \sum_{m,n} R_{m,n}(\psi) \cos(m\theta - n\varphi)$$
$$Z(\psi) = \sum_{m,n} Z_{m,n}(\psi) \sin(m\theta - n\varphi)$$

LHD: R= 3.6,3.75,3.9 m; a= 0.6-0.65 m M=10, l=2. n=1, m=1 island in the edge.

CHS: R= 1 m; a= 0.2 m; M=8; l=2.

TJ-II: R= 1.5 m; a= 0.2 m M=4, l=1. High Flexibility varying 1

atania, 200 HSX: R=1.2 m; a=0.15 m QHS and Mirror Configurations

Optimization Criteria: Target Functions

-Neoclassical Transport.

- Bootstrap current.
- Equilibrium vs. plasma pressure.
- Stability (Balloning, Mercier,...)

-Genetic Algorithm to detect the optimum configuration for given criteria. Target Functions can be modified.

VMEC on Kurchatov GRID

- LCG-2 based Russian Data Intensive Grid consortium resources.
- About 7.500 cases computed (about 1.500 was not VMEC-computable, i.e. no equilibrium).

Each case took about 20 minutes.
 Up to 70 simultaneous jobs running on the grid.

Optimised Stellarators QPS and NCSX Supercomputer Optimization

COMPUTING in the GRID: Future applications

>EDGE2D Application for tokamaks

Transport Analysis of multiple shots (typically 10⁴ shots) or Predictive Transport with multiple models: e. g. ASTRA. CIEMAT(Spa) + IPP(Ger) + Kurchatov(Rus) + EFDA(UE) + ...

>Neutral Particle Dynamics: EIRENE: CIEMAT(Spa) + IPP(Ger)

JET – Flagship of Worldwide Fusion: EDGE2D Equilibrium code.

stand \$1.00

EDGE2D: Determine plasma shape from Measurements: Plasma current, Pressure, Magnetic field...

Cross section of present EU D-shaped tokamaks compared to the ITER project

 $\vec{j} \times \vec{B} = \nabla p$

-EDGE2D code solves the 2 D fluid equations for the conservation of energy, momentum and particles in the plasma edge region.

-Ions, electrons and all ionisation stages of multiple species are considered.

-Interaction with the vessel walls is simulated by coupling to Monte-Carlo codes, to provide the neutral ion and impurity sources.

Massive Transport Calculations

For Instance: Enhanced heat Confinement in TJ-II. Lower heat diffusivity for low electron density and high absorbed power density.
 A different case on every PE.

EIRENE Code

Trayectory of a He atom in TJ-II. Vertical and horizontal proyections. It starts in the green point and is absorbed in the plasma by an ionization process. The real 3D geometry of TJ-II vacuum chamber is considerd. NA4-Catania, 2006

EIRENE Code comes from IPP (Jülich, Germany) and is extensively used by Eusion community.

DATA HANDLING

Storage:

Large data flux: 10⁴ sensors x 20-50 kHz sampling= 1-10 GBy per second raw data x 0.5 h= 3 TBy per shot in ITER every 1,5 h

Supercomputing and Grid Computing --> Data Storage: Scratch and permanent.

Access & Sharing Data : Large Cooperative Experiments

DAS Tools: Visualization, DAQ and processing

To add gridaware protocols for:

Data navigation and mining

Data exchange

Data search

Event catch

Schematic data flow in Fusion

A proposal for data storage components of the ITER Information Plant

PARTNERS and Resources for VO

- CIEMAT (Spain) (plus BIFI, UCM, INTA): Kinetic Transpor tand Massive Ray Tracing.
 60 + 40 + 30 nodes (Pentium IV with 2,8 Ghz and 512k of Memory)
- > Kurchatov (Russia): Stellarator Optimisation.
 - > 40 Processors.
- EFDA (European Union) >> International Tokamak Modelling Group (EDGE2D) 24 processor (12 dual core 64 x 2 Athlon 4600+)1 TB raided disk storage
- > KISTI (South Korea). GRID needs foreseen:
 - > 1. Internatinal data sharing for KSTAR experiment.
 - > 2. Grid computing service for experiment and modelling.
 - 3. Grid-enabled remote control system for remote experiment scheduling, remote experiment monitoring, and remote operation.
- > ENEA (Italy).
- > CEA (France).
- > Possible new Partners: University of Sao Paolo (Brazil)
- > Contact with Japan, USA and China Institutes is desirable and possible.

Experience in using and developing Fusion Applications. Experience in porting applications and developing Grid Technologies. NA4-Catania, 2006

Final Remarks

SRID technologies will enhance Fusion Research: computing and data handling.

- > GRID technologies will win visibility when applied to large Fusion Experiments (like ITER).
- Demonstration effect: If Fusion-Grid is succesful, GRID technologies will be extensively used by Fusion Community in the future.

FIRST APPLICATIONS ARE READY TO RUN IN THE GRID.

Para ver esta película, debe disponer de QuickTime™ y de un descompresor TIFF (LZW).

Tiled Wall Displays

- Customized Apps
 - Display Walls
- Sharing to the group
 - Collocated
- Sharing from off-site
 "See my graph"

