

News from **ATLAS** physics studies

Alan Barr UCL, London

LHC-ILC : 13 Dec 2005

ATLAS Physics Activities

- Currently focused on commissioning
 - Measurements with small-luminosity samples
 - 100 pb⁻¹ to 10 fb⁻¹
 - What might we be able to see?
- Increase the **realism** of our analyses
 - Better background estimates
 - As-built detector simulation
 - Resolution determination

Motivated by commissioning

No longer an exercise

Real detector commissioning in progress as I speak

Increasing realism (1)

- As-built performance being added to simulations
 - Mis-alignments, dead channels, actual material budget ...
- Major effort in progress

Increasing realism (2)

Asai, Sasaki, Tanaka

Have to get SM BG correct Critical in being able to make discovery

- Some previous predictions made with jets from parton e.g. boson production from parton shower only
 - Or boson + 1 jet in M.E.
 - Cover high k_T region of phase space badly
- Need high k_T jets for SUSY analysis
 - Use newer M.E. Monte Carlos

Alan Barr UCL ATLAS

In parallel with commissioning: improved analysis techniques

- Main thrust of this talk is at SUSY:
 - Mass determination
 - Spin determination
 - Flavour measurements
 - Dark-matter sensitive measurements
 - Stable R-hadrons
- N.B. We also have consolidation and progress in:
 - Higgs
 - Parton distributions
 - W mass

...

- Top mass

Experimental methods for controlling systematic uncertainties

Things which will be done **after** discovery

What's being reported?

hep-ph/0410364

Physics Interplay of the LHC and the ILC

The LHC / LC Study Group

Editors:

G. WEIGLEIN¹, T. BARKLOW², E. BOOS³, A. DE ROECK⁴, K. DESCH⁵, F. GIANOTTI⁴, R. GODBOLE⁶, J.F. GUNION⁷, H.E. HABER⁸, S. HEINEMEYER⁴, J.L. HEWETT², K. KAWAGOE⁹, K. MÖNIG¹⁰, M.M. NOJIRI¹¹, G. POLESELLO^{12,4}, F. RICHARD¹³, S. RIEMANN¹⁰, W.J. STIRLING¹

- Excellent groundwork done in LHC-ILC doc
 - Chapter 5 = SUSY
 - Masses, Mixings, Couplings, Flavour

- I'm mostly reporting updates relative to LHC-ILC doc
 - Improved masses, mixings, couplings + spin, dark matter

Warning – lots of slides on **edges** follow! If LSP escapes detection we see kinematic edges rather than mass peaks for new particles

SUSY mass measurements: relevance for ILC

- LHC clearly cannot fully constrain all parameters of mSUGRA
 - However it makes good constraints
 - Particularly good at mass differences [O(1%)]
 - Not so good at mass scales
 - [O(10%) from direct measurements]
 - Mass scale possibly best "measured" from cross-sections
 - Often have >1 interpretation
 - What solution to end-point formula is relevant?
 - Which neutralino was in this decay chain?
 - What was the "chirality" of the slepton " " " ?
 - Was it a 2-body or 3-body decay?
 - Combining constraints is complicated
 - I highlight some analyses which do this well!

Mass measurements

Ambiguities in sparticle identification

Lester, Parker, White hep-ph/0508143

- May not be possible to identify which particles participate in which decay chains
 - Ambiguity in interpreting kinematic edge results

Name	Hieracrchy						
H_1	$m_{ ilde{q}}$	\checkmark	$m_{ ilde{\chi}_2^2}$	\mathbb{A}	$m_{\tilde{e}_L}$	Ā	$m_{\tilde{\chi}_1^0}$
H_2	$m_{\ddot{q}}$	>	$m_{\tilde{\chi}_3^0}$	>	$m_{\vec{v}_L}$	>	$m_{\tilde{\chi}_1^0}$
H_3	$m_{ ilde{q}}$		$m_{\tilde{\chi}_3^0}$		$m_{\tilde{e}_L}$		$m_{\tilde{\chi}_2^0}$
H_4	$m_{ ilde{q}}$		$m_{ ilde{\chi}_4^0}$		$m_{\tilde{e}_L}$		$m_{\tilde{\chi}_1^0}$
H_5	$m_{ ilde{q}}$	\geq	$m_{\tilde{\chi}_4^0}$		$m_{\tilde{e}_L}$		$m_{\tilde{\chi}_2^0}$
H_6	$m_{ ilde{q}}$	\geq	$m_{\tilde{\chi}_4^0}$	\geq	$m_{\tilde{e}_L}$	X	$m_{\tilde{\chi}_{S}^{g}}$
H_7	$m_{ ilde{q}}$	\geq	$m_{\tilde{\chi}_2^0}$		$m_{\tilde{e}_R}$		$m_{\tilde{\chi}_1^0}$
H_8	$m_{ ilde{q}}$	\geq	$m_{\tilde{\chi}_3^0}$		$m_{\tilde{e}_R}$		$m_{\tilde{\chi}_1^0}$
H_9	$m_{ ilde{q}}$		$m_{\tilde{\chi}_3^0}$		$m_{\tilde{e}_R}$		$m_{\tilde{\chi}^0_2}$
H_{10}	$m_{ ilde{q}}$		$m_{\tilde{\chi}_4^0}$		$m_{\tilde{e}_R}$	A	$m_{\tilde{\chi}_1^0}$
H_{11}	$m_{ ilde{q}}$	\geq	$m_{ ilde{\chi}_4^0}$		$m_{\tilde{e}_R}$		$m_{\tilde{\chi}^0_2}$
H_{12}	$m_{ ilde{q}}$	\geq	$m_{\tilde{\chi}_4^0}$		$m_{\tilde{e}_R}$	N	$m_{\tilde{\chi}_3^0}$

12 different mass hierarchies which lead to qll final state in a series of 2-body decays

Alan Barr UCL ATLAS

Composite formula for edge positions
 Multiple interpretations for masses

Gjelsten, Miller, Osland hep-ph/0507232

Alan Barr UCL ATLAS

Gielsten, Miller, Osland hep-ph/0501033

$$\tilde{g} \to \tilde{q}_L q_{\rm n} \to \tilde{\chi}_2^0 q_{\rm f} q_{\rm n} \to \tilde{l}_R l_{\rm n} q_{\rm f} q_{\rm n} \to \tilde{\chi}_1^0 l_{\rm f} l_{\rm n} q_{\rm f} q_{\rm n}$$

- More end-points available
- Overall more over-constrained system

- For SPS1a, combine gluino + standard LHC endpoints
 - Run ensemble of 10,000 "experiments"
 - Plot masses and mass differences (above) for $\Delta\chi^2\!\!<\!\!1$
- Add ILC "measurement" of LSP
 - Improves mass measurements How general
 - Removes ambiguities at SPS1a | is tl

Gjelsten, Miller, Osland hep-ph/0501033

ties at SPS1a is this?

$$\tilde{g} \rightarrow \tilde{q}_L q_n \rightarrow \tilde{\chi}_2^0 q_f q_n \rightarrow \tilde{l}_R l_n q_f q_n \rightarrow \tilde{\chi}_1^0 l_f l_n q_f q_n$$
Alan Barr UCL ATLAS

Two- or three-body decays?

- In some cases (as non-universal higgs model above) it is possible to distinguish 3-body from successive 2body from shape of distributions @ LHC
- Not guaranteed
 - Futher ambiguities!

13-12-2005

Alan Barr UCL ATLAS

Lester, Parker, White

Dealing with ambiguities

- 1. Start with experimental observables
 - Kinematic edges etc
- 2. Use Markov Chain Monte Carlo to explore parameter space
 - Fold in ambiguities
- 3. Parameterise by lowscale or high-scale parameters

Find **islands** of probability Fuller exploration of parameter space

Constraining masses with crosssection information

- Edges best for mass differences
 - Formulae contain differences in m²
 - Overall mass- scale hard at LHC
- X-sec changes rapidly with mass scale
 - Use inclusive variables to constrain mass scale
 - E.g. >500 GeV ptmiss

Lester, Parker, White hep-ph/0508143

Alan Barr UCL ATLAS

Shapes as well as end-points?

- First step is to check there is occupancy near endpoints
 - Otherwise they can be mis-measured
- Possible also to use shape information directly...

Gjelsten, Miller, Osland hep-ph/0501033

Alan Barr UCL ATLAS

Likelihood method for mass reconstruction

- Event-by-event likelihood analysis started in:
 - hep-ph/0410160 Kawagoe, Nojiri, Polesello
 - hep-ph/0402295 Lester, Allanach
 - This contains all the experimental information
 - In principle it can give the highest precision
 - Removes problem of how to fit edges
 - Perhaps it can remove some ambiguities?
- Difficult practical issues:
 - Uncertainties in signal and BG must be well know
 - Computationally very expensive
- No real stand-alone workable proof yet

Combining SUSY mass measurements

- LHC mass measurements will not be best expressed in the form M(sparticle) = x±y
 - Most of the information (currently) comes from edges
 - Cross-sections will also contribute
 - Need to account for correlations and ambiguities
 - ILC will resolve many ambiguities
 - It is likely that some will remain
- Convergence of a MINUIT fit is not sufficient
 - even with correlations
- Good practice is out there (incl. combined ILC-LHC)
 - Ensembles of experiments
 - Markov Chain Monte Carlo
 - Likelihood analyses

Can LHC-only likelihood analysis reduce/remove ambiguities?

ILC reduces/removes LHC ambiguities for SPS1a Is this general?

SUSY spin measurements at LHC

Spin determination

• Gauntlet thrown down in hep-ph/0205314

Bosonic Supersymmetry? Getting Fooled at the LHC

Hsin-Chia Cheng,¹ Konstantin T. Matchev,^{2,3} and Martin Schmaltz⁴

Problem:

"How to distinguish Univ. Ex. Dim. from SUSY at the LHC?"

- UED: 2nd KK mode observable if light
- Spin is the ultimate discriminator
- Method 1
 - Charge asymmetry in lepton-quark invariant mass
- Method 2
 - Slepton spin from direct production

Analysis 1 : χ_2^0 spin

- Chiral couplings to neutralino-2
- Opposite effect for
 |* vs |-
 - Charge asymmetry in cascade decays
- Opposite effect for squark vs anti-squark
 - Symmetric production would wash out effect
 - But greater production of squarks relative to anti-squarks @ pp collider

Charge asymmetry

- Demonstration that spin determination is possible @ LHC
- Encouraging... but
 - Relies on presence of particular chain
 - Not a general technique

Neutralino spin

SUSY vs UED: Helicity structure

 $\begin{array}{c|c} & & & & & & \\ \hline q_L & q^* & Z^* & & & \\ \hline UED case & & & \\ \end{array}$

Smillie, Webber hep-ph/0507170

See also: Battaglia, Datta, De Roeck, Kong, Matchev hep-ph/0507284

- Both prefer quark and lepton backto-back
 - Both favour large (ql⁻) invariant mass
- Shape of asymmetry plots similar

Smillie, Webber hep-ph/0507170

- For UED masses not measureable
 - Near-degenerate masses \rightarrow little asymmetry
- For SUSY masses, measurable @ SPS1a
 - but shape is similar
 - need to measure size as well as shape of asymmetry

Goto, Kawagoe, Nojiri hep-ph/0406317

Lepton non-universality

- Lepton Yukawa's lead to differences in slepton mixing
 - Mixing measurable in this decay chain
- Not easy, but there is sensitivity at e.g. SPS1a
 - Biggest effect for taus - but they are the most difficult experimentally

Neutralino spin

Range of Validity

Allanach & Mahmoudi To appear in proceedings Les Houches 05

- Limits:
 - Decay chain must exist
 - Sparticles must be fairly light
- Relatively small area of validity
 - ~ red + orange
 areas in plot
 after cuts

Summary of neutralino-2 spin

- Workable in some regions of parameter space
 - But those regions are not very large
- Can give slepton mixing information
 - Lepton non-universality
- Works best when sparticles non-degenerate (SUSY-like)
 - Not workable when masses are near-degenerate (UED-like)
- Similar shape for UED and SUSY
 - Size of asymmetry must be experimentally measured, not simply shape

Method 2: Angular distributions in direct slepton pair production

Sensitive variables? AJB hep-ph/0511115

- · cos θ_{lab}
 - Good for linear e⁺e⁻ collider
 - Not boost invariant
 - Missing energy means Z boost not known @ LHC
 - Not sensitive @ LHC
- cos $\theta_{||}^*$ - 1-D function of $\Delta \eta$:

 $\cos \theta_{ll}^* = \cos(2\tan^{-1}e^{-\frac{1}{2}\Delta\eta}) = \tanh(\frac{1}{2}\Delta\eta)$

- Boost invariant
- Interpretation as **angle** in boosted frame
- Easier to compare with theory

N.B. ignore azimuthal angle

Alan Barr UCL ATLAS

Slepton spin

AJB hep-ph/0511115

Slepton spin - LHC pt 5

- Statistically measurable
- Relatively large luminosity required
- Study of systematics in progress
 - SM background determination
 - SUSY BG determination
 - Experimental systematics
- No show-stoppers so far

Slepton spin

Snowmass points

AJB hep-ph/0511115

Summary of slepton spin

- A more general method than lepton charge asymmetry
 - Works at various SPS points
- Sensitive when both:
 - 1. sleptons are light
 - 1. \rightarrow reasonable x-sec
 - slepton-LSP mass difference is > m_W (for either slepton) → separate from WW
- Possible extensions
 - Clean environment for measuring slepton pair production cross-section
 - Very useful constraint esp. if mass scale can be independently measured

Finding stable R-hadrons

- Heavy hadrons from:
 - Hadronised stable gluinos
 - Gluino (n)LSP from split susy, GMSB ...
 - New conserved QN
 - Kinematic supression of decays
- Production:
 - Gluino pair, squark pair, or one of each
 - Study looks at gg→gluino gluino only
- Lightest states:
 - R-mesons
 - Charged or neutral in approximately equal numbers
- Interactions
 - R-meson → R-baryon
 - Charge change (neutral \Leftrightarrow charged)

Kraan hep-ph/0404001

Kraan, Hansen, Nevski hep-ph/0511014

Alan Barr UCL ATLAS

LHC characteristics: R-hadrons

Signatures:

•

- High P_T tracks (charged hadrons)
- 2. High ionisation in tracker (slow, charged)
- 3. Characteristic energy deposition in calorimeters
- 4. Large time-of-flight (muon chambers)
- Trigger:
- 1. Calorimeter: etsum or etmiss
- 2. Time-of-flight in muon system
- Overall high selection efficiency
 - Reach up to mass of 1.8 TeV at 30 fb⁻¹

Kraan, Hansen, Nevski

Constraining MSSM dark matter

- We expect/hope to observe particles stable on detector time-scales
 - Are these the major contributors to the cosmological CDM?
 - What can we say about the expected relicabundance

N.B. this necessarily comes after we:

- 1. Find "supersymmetry"
- 2. Make inclusive measurements \rightarrow prove there is a WIMP
- 3. Make excusive measurements \rightarrow find out about sparticle masses
- 4. Measure B.R.s and decays

Dark matter constraints in mSUGRA

- Restrict to mSUGRA
 - "Over-constrain" masses
- Small uncertainty on expected relic density
- Realistic?
 - Probably too restrictive

Important to look at unconstrained MSSM

Full MSSM : Required quantities

- 1. Neutralino masses
 - Use as inputs to gaugino & higgsino content of LSP
- 2. Lightest stau mass
 - Is stau-coannihilation important?
- 3. Heavy Higgs boson masses
 - Is Higgs co-annihilation important?

τ mass and mixing

- stau₁ mass from kinematical edges
- Mixing angle from
 - Ratio of branching ratios (with netrualino mixing maxtrix as input)
 - Charge asymmetry?
- Need one other parameter
 - τ_2 mass (perhaps from direct pair production?)

Polesello, Nojiri, Tovey

Higgs constraints

- Large area where heavy higgses not detectable in decays to SM particles
 - Including SPA point (425,10)
- Decays into SUSY particle pairs under investigation
- Null results might be enough
 - "the H/A are too heavy to put you in a Higgs focus region"

Discoverable higgs' in decays → SM

Dark matter prelim. results

• Early study suggests ATLAS might achieve at SPA1

 $\Omega_{\chi}h^2 = 0.108 \pm 0.01(stat + sys)^{+0.00}_{-0.002}(M(A))^{+0.001}_{-0.011}(\tan\beta)^{+0.002}_{-0.005}(m(\tilde{\tau}_2))$

- Good (but not at WMAP precision)
- Dosen't prove that WIMPs are cosmologically stable
 - Direct search needed
- Still need to ensure we can measure:
 - τ_2 mass
 - H/A masses
 - tanβ
- LHC experimental studies required at other points

Input from ILC will surely help

Most difficult SUSY case for the LHC?

- In LHC-ILC document Gunion suggests
 - Baryonic R-parity violation
 - LSP → c,d,s so no vertex tags
 - + degenerate wino LSP
 - With mass in range where soft pions are produced in chargino-1 decay
- I think we might be able to crack that one:
 - If there are cascades from squarks via neutralinos and leptons
 - similar to mSUGRA RPV case (see e.g. hep-ph/0102173)

Toughest back-street corner of MSSM?

- Really tough experimental case would be:
 - Like Gunion scenario
 - Wino LSP
 - Baryon RPV
 - + heavy sleptons
 - No cascade decays through leptons
 - + squarks near gluino mass
 - So gluino is not stable
- Signature is jets!
- Could gluino decays to heavy quarks still be used?
 - Make sure the b-tagging efficiency is good!

Observations

- "Competition" is healthy!
 - Mass analysis @ ILC improved LHC techniques
 - Spin determination at LHC was spurred on by:
 - 1. Theoretical model (UED) showing importance of spin
 - Studies showing that it e⁺e⁻ colliders are capable of such measurements
- Effect of ILC studies has already been to improve LHC analyses and reach
 - New analyses developed
 - Better understand LHC limits
 - Synergy already apparent here!

ILC definitely will improve **precision Q**: How well can the ILC cover the **gaps** where the LHC isn't sensitive?

Back-up slides

Einstein discovers that time is actually money.

Analysis 2 : Direct slepton spin determination

- Sleptons easier than squarks
- Lower cross-section
- But s-channel production dominates
 - Gauge boson fusion to slepton pair important at higher slepton masses

slepton \Leftrightarrow lepton correlations

- Slepton/KK lepton production angle not measurable
- Lepton *inherits* from boost of slepton parent
 - Good correlation in plots above
- Observable cos θ^*_{\parallel} smaller for SUSY than UED

Similar results at various SPS points

200-300 fb⁻¹

Includes stat error from SM and SUSY BG subtraction

No systematic uncertainty in backgrounds