LHC/ILC interplay in focuspoint inspired scenarios (work in progress)

Gudrid Moortgat-Pick

in collaboration with: K. Desch, J. Kalinowski, G. Polesello, K. Rolbiecki, J. Stirling

LHC/ILC meeting CERN, 13/12/2005

- 1. Introduction, motivation
 - → general remarks about spin correlations, angular and energy distributions
- 2. Chosen scenario focuspoint/split-Susy inspired \rightarrow masses. cross sections
- 3. Energy and invariant mass distributions
- 4. Forward-backward asymmetries \rightarrow determination of $m_{\tilde{\nu}}$, $m_{\tilde{a}}$ far beyond the kinematical limit
- 5. Fit results for parameter determination
- 6. Conclusions

Motivation

 \Rightarrow Revealing the structure of the underlying physics

- MSSM has 105 new parameters how to constrain the parameter space?
 - \rightarrow constraints on parameters from e, n, Hg dipole moments,
 - \rightarrow exclusion bounds from LEP, Tevatron
 - \rightarrow constraints from low-energy experiments $b \rightarrow s\gamma$, $g_{\mu} 2$
 - \rightarrow constraints from dark matter searches, etc.

Ibrahim ea '99, Barger ea. '01, Abel ea.'01, Belanger'04, Olive ea. '05,...

- Soon LHC data and maybe also first ILC data
 - \rightarrow suitable observables: cross sections, masses, BR's, ...
- possible problem: only a few particles directly accessible
 - \rightarrow possible to determine the model with only a few data?
 - → today: challenging 'focuspoint-inspired' scenario
 - → suitable observable: forward-backward asymmetries

⇒ LHC/ILC interplay essential: covers a large range of the parameter space

Spin correlations

Processes: $a + b \longrightarrow f_1 + f_2$, $f_1 \rightarrow 123$ and $f_2 \rightarrow 456$

- study of properties of f_1 , f_2
- \rightarrow 'split' process in production×decay in narrow width approximation ok., since here $m_{\tilde{\chi}} \gg \Gamma_{\tilde{\chi}}$
- \rightarrow however take into account full spin correlations of f_1 , f_2

•
$$|T|^2 = |\Delta_{f_1}|^2 |\Delta_{f_2}|^2 \sum_{fin.sp.} (P^{\lambda_{f_1}\lambda_{f_2}} P^{*\lambda'_{f_1}\lambda'_{f_2}}) \times (Z_{\lambda_{f_1}}Z^*_{\lambda'_{f_1}}) \times (Z_{\lambda_{f_2}}Z^*_{\lambda'_{f_2}})$$

⇒ production and decay process are coupled by interference terms between various polarization states of the fermions!

Amplitude squared of production \times decay:

$$|T|^2 \sim \mathcal{P}(p_{f_1}, \overline{s_{f_1}, p_{f_2}}, \underbrace{s_{f_2}}_{p_{f_2}}) \mathcal{D}(p_{f_2}, s_{f_2}}) \otimes \mathcal{D}(p_{f_1}, s_{f_1})$$

spin correlations

spin vectors $s_f \Rightarrow S^L(f_i)$ longitudinal and $S^{T_x}(f_i)$, $S^{T_y}(f_i)$: transverse polarizations of f_i

Spin correlations, cont.

Processes: $a + b \longrightarrow f_1 + f_2$, $f_1 \rightarrow 123$ and $f_2 \rightarrow 456$ \Rightarrow Decay particles '1,2,3' and '4,5,6' depend on polarization of f_1 , f_2 .

• Which observables depend on spin correlations?

 \Rightarrow depends on Majorana \leftrightarrow Dirac character of fermions f_1 , f_2

Petkov'84, Bilenky et al. '85,'86, GMP et al., '97, '98, '99, '00, '02

	Dirac		Majorana		
Decay	CP	Ç⁄Þ	СР	Ç⁄Þ	GMP, Fraas '00
energy distrib. of particle '1'	$S^L(f_i)$	$S^L(f_i)$	—	$S^L(f_i)$	In Dirac case:
opening angle of particles '1' and '2'	$S^L(f_i)$	$S^L(f_i)$	—	$S^L(f_i)$	\rightarrow effects in shape
angular distrib. of particle '1'	all	all	all	all	
opening angle of particles '1' and '4'	all	all	all	all	$O(ao/aE_f)$

Remark: invariant mass distrib. ('12') are independent of spin correlations! Dicus, Sudarshan, Tata '85

- What are we doing today? some applications; pure analytical approach for phase space and spin-density matrix
- Which generators could also simulate these effects?
 - → SUSYGEN (Ghodbane '99), HERWIG (Richardson '01)

Chosen scenario – focuspoint-inspired scenario

- Motivation: what to do if only very few particles accessible at LHC/ILC?
- case study focuspoint inspired mSUGRA scenario (Desch, Kalinowski, GMP, Rolbiecki, Stirling):
 - \rightarrow challenging in general at LHC as well as at ILC!
 - \rightarrow assume: LHC + first stage of ILC_{500GeV}, later ILC_{1TeV}(but not today!)
- chosen scenario: $M_1 = 60 \text{GeV}$, $M_2 = 121 \text{GeV}$, $\mu = 540 \text{GeV}$, $\tan \beta = 20$
 - $ightarrow m_h =$ 120GeV, $m_{A,H,H^\pm} \sim$ 2TeV
 - $ightarrow m_{ ilde{g}}=$ 416GeV, $m_{ ilde{q}}\sim$ 2TeV, $m_{ ilde{t}_{1,2}}\sim$ (1100, 1600)GeV
 - $\to m_{\tilde{\chi}^0_i} = (59, 117, 546, 550) \text{GeV}, \ m_{\tilde{\chi}^+_i} = (117, 553) \text{GeV}, \ m_{\tilde{e}_{L,R}, \tilde{
 u}} \sim 2 \text{TeV}$
- at LHC: \tilde{g} and its chains accessible, mainly $\tilde{g} \to \tilde{\chi}_2^0 b \overline{b}$
- at ILC: $m_{\tilde{\chi}_{1,2}^0}$, $m_{\tilde{\chi}_{1,2}^\pm}$ kinematically acessible

$$\sigma(e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-) \sim 2$$
 pb, but $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0) < 1$ fb!

 \Rightarrow Life may be tough: what could one do with LHC+ILC₅₀₀? Could one get any constraints on heavy scalar particles?

Parameter determination – input data

• in the ff: use A_{FB} of final decay $\ell!$									
Processes: $e^+e^- \to \tilde{\chi}_1^+ \tilde{\chi}_1^-$, $\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 e^+ \nu_e$ or $\to \tilde{\chi}_1^0 \bar{s}c$									
Cross sections of $ ilde{\chi}_1^\pm$, $ ilde{\chi}_1^0$, $ ilde{\chi}_2^0$ at $\sqrt{s}=$ 350, 500 GeV:									
$BR = BR(\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 q_u \bar{q}_d) \times BR(\tilde{\chi}_1^- \to \tilde{\chi}_1^0 \ell^- \bar{\nu}_\ell) + BR(\tilde{\chi}_1^- \to \tilde{\chi}_1^0 \ell^- \bar{\nu}_\ell)^2 \sim 0.34$									
$ ightarrow$ excellent ${ ilde \chi}_1^\pm$ with	\sqrt{s}/GeV	(P_{e^-}, P_{e^+})	$\sigma(ilde{\chi}_1^+ ilde{\chi}_1^-)/{ m fb}$	$\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)\times BR/{\rm fb}$	$A_{FB}(e^-)$ /%				
with 50% effi.	350	(-90%, +60%)	6195.5±7.9	2127.9±4.0	4.49±0.32				
1σ stat. error		(0, 0)	2039.1±4.5	700.3±2.7	4.5 ± 0.5				
$\Delta P_{e^\pm}/P_{e^\pm}=0.5\%$		(+90%, -60%)	85.0±0.9	29.2 ±0.7	$4.7{\pm}2.7$				
$\mathcal{L}=200~{ m fb}^{-1}/{ m Pol}.$	500	(-90%, +60%)	3041.5±5.5	1044.6 ± 2.3	4.69±0.45				
$ ightarrow ilde{\chi}^{0}_{1,2} < 1$ fb not		(0, 0)	1000.6±3.2	343.7±1.7	4.7±0.8				
used, challenging!		(+90%, -60%)	40.3±0.4	$13.8 {\pm} 0.4$	$5.0{\pm}3.9$				

LHC/ILC interplay in focuspoint inspired scenarios

How to measure the masses at LHC and ILC?

- LHC: from \tilde{g} decay chain: $m_{\tilde{\chi}_1^0} m_{\tilde{\chi}_1^0}$
- ILC: masses of $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^0$ from a) a threshold scan and from b) lepton energy distribution and c) hadronic invariant mass distribution

⇒ Both distributions are suitable (together with threshold scan) we assume $m_{\tilde{\chi}_1^0} \sim 0.2$ GeV, $m_{\tilde{\chi}_1^\pm} \sim 0.1$ GeV ⇒ together with LHC: $m_{\tilde{\chi}_2^0} = 0.2$ GeV

Short intermezzo

• Dependence of decay energy distribution on spin correlations: Processes: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$, $\tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 e^- \bar{\nu}$

 \Rightarrow Shape depends on spin correlations

 \Rightarrow today: we are using only the kinematical endpoints

Parameter determination – preliminary

Processes: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^\pm \rightarrow \tilde{\chi}_1^0 e^- \bar{\nu}, s\bar{c}$ in our scenario... Methods to get parameters: Feng ea '94, Tsukamoto ea '95, Baer ea '96, Kneur ea. '99, GMP'98,'00, Choi'98,'00,'01,... Assumptions: ILC: $\delta m_{\tilde{\chi}_1^{\pm}} \sim 0.1$ GeV (threshold scan) and $\delta m_{\tilde{\chi}_1^0} \sim 0.2$ GeV LHC: $\delta m_{\tilde{\chi}_2^0} \sim 0.2 \text{ GeV}$ ILC: δ (pol. cross sections×BR): 1 σ stat., $\epsilon = 50\%$, $\Delta P/P = 0.5\%$ fit-results wo A_{FB} of e^- : $M_1/\text{GeV} \sim 60.0 \pm 0.23$, $M_2/\text{GeV} \sim 121.0 \pm 0.7$, $\mu/\text{GeV} = 540 \pm 50, \ m_{\tilde{\nu}}/\text{GeV} = 2000 \pm 100$ fixed $\tan \beta = 20 - \sin \beta$

gaugino parameters M₁, M₂ rather well determined: relative error ~ 0.5%
 ⇒ but μ very weak, about ±10% — clear, χ₁[±] only gaugino–like
 ⇒ also m_{ν̃} very inaccurate, about ±5% — also clear, since very heavy
 → kinematically suppressed

• how do allowed parameter ranges change with different tan β ?

Impact of fixed tan β in fit without using A_{FB}

• Fitted central values depend on $\tan \beta$:

- Varying $\tan \beta$ between 5 and 30 \Rightarrow shift in M_1 by about 1 GeV
- \Rightarrow shift in M_2 by about 3.5 GeV
- \Rightarrow shift in μ and $m_{\tilde{\nu}}$ much weaker

A_{FB} of decay f: chargino production and decay

- known proposals: $m_{\tilde{\nu}}$ from $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ production only
- here other method needed: use A_{FB} of final decay ℓ ! Processes: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 e^- \bar{\nu}$

Baer et al. '95

GMP ea '99

spin correlations important: large effect!

• strong dependence on $m_{ ilde{
u}}$

 \Rightarrow since $\Delta(A_{FB}) \sim 0.1\% \rightarrow$ seems to be useful for heavy $m_{\tilde{\nu}}$ \Rightarrow redo the fit including A_{FB}

Gudi Moortgat-Pick

LHC/ILC interplay in focuspoint inspired scenarios

Constraining of $m_{\tilde{\nu}}$ with A_{FB} of e^- : some results Processes: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\chi}_1^0 e^- \bar{\nu}$ in our scenario... Assumptions – again: ILC: $\delta m_{\tilde{\chi}_1^{\pm}} \sim 0.1$ GeV (threshold scan) and $\delta m_{\tilde{\chi}_1^{0}} \sim 0.2$ GeV LHC: $\delta m_{\tilde{\chi}_2^0} \sim 0.2 \text{ GeV}$ ILC: δ (pol. cross sections×BR): 1 σ stat., $\Delta P/P = 0.5\%$ fit-results wo A_{FB} of e^- : $M_1/\text{GeV} \sim 60.0 \pm 0.23$, $M_2/\text{GeV} \sim 121.0 \pm 0.7$, $\mu/\text{GeV} \sim 540 \pm 50, \ m_{\tilde{\nu}}/\text{GeV} = 2000 \pm 100$ but now: fit-results w A_{FB} of e^- : $\mu/\text{GeV} \sim 533 \pm 6.5$, $m_{\tilde{\nu}}/\text{GeV} = 1992 \pm 17!$ fit-results w A_{FB} of e^- and variable tan β : $M_1/\text{GeV}\sim 60.0\pm 0.4$, $M_2/\text{GeV}\sim 121.0\pm 1.5$, $\mu/\text{GeV} \sim 540 \pm 50, \ m_{\tilde{\nu}}/\text{GeV} = 1995 \pm 60$ $\Rightarrow A_{FB}$ very suitable for constraining heavy $m_{\tilde{\ell},\tilde{a}}$

⇒ rather accurate parameter determination although tricky scenario!

 A_{FB} of decay f: chargino production and decay

- what's about hadronic decay?
- $m_{\tilde{\nu}}$ appears only in production: A_{FB} still sensitive? Processes: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 s\bar{c}$

⇒ unknown parameters at ILC: $m_{\tilde{\nu}_e}$, $m_{\tilde{s}}$, $m_{\tilde{c}}$ in progress: study with $m_{\tilde{q}}$ from LHC!

Further possible interplay with LHC

- Strategy: $m_{\tilde{q}}$ known from LHC with about $\Delta m_{\tilde{q}} \sim 5\%$?
- Could we use $A_{FB}(c)$ at the ILC, derive $m_{\tilde{\nu}}$ and use $A_{FB}(e^-)$ for $m_{\tilde{e}_L}$? Processes: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 e^- \bar{\nu}$

 \Rightarrow Precise A_{FB} measurements leads to powerful constraints far beyond kinematical limit!

Conclusions and Outlook

- Angular distributions are powerful observables
 - * spin correlations very important!
 - → if MC studies: please use corresponding program!

• With forward-backward asymmetries: excellent constraints on heavy masses rather accurate parameter determination

- \rightarrow possible, even in challenging scenarios!
- Do not be afraid for heavy sleptons, squarks
- Excellent potential for further promising LHC/ILC interplay
 → inclusion of squark masses etc. (stay tuned)