Fittino: mapping measurements to SUSY theory parameters

Philip Bechtle¹, Klaus Desch², Peter Wienemann²

in collaboration with

Werner Porod³

¹SLAC ²University of Freiburg ³University of Valencia and University of Zurich

EuroGDR Supersymmetry November 02-05, 2005 Barcelona, Spain

The task

Once SUSY has been established in experiments, Lagrangian parameters need to be extracted from measurements.

Mapping

Stumbling block: Lagrangian parameters *≠* observables

(d) (d) (d) (d) (d) (d) (d) (d) (d) (f)

m(h) BR(h \rightarrow gg) $\sigma(e^+e^-\rightarrow \chi_1^+\chi_1^-)$ BR($\chi_1^+\rightarrow$ Stau₁ v) BR($\chi_1^-\rightarrow$ Stau₁ v) etc.

Lagrangian parameters:

The challenge

Need a procedure to connect observables to Lagrangian parameters within a certain theoretical framework

At tree level, some sectors (e.g. chargino, chargino+neutralino) can be treated separately.

At loop level, in principle every observable depends on every parameter.

Complicated mutual dependence of the various parameters.

Approximate picture (not quite correct since non-linear mapping):

Tree level

Loop level

The solution: iterative approach

Fittino

- C++ program using described iterative method
- Code available at http://www-flc.desy.de/fittino (+ documentation, mailing list, etc.)
- Inputs specified using powerful input file syntax
- No a priori knowledge of parameters needed
- Alternative χ^2 minimization methods:
 - MINUIT
 - simulated annealing
- Interface to SUSY spectrum calculator (SPheno) via SUSY Les Houches Accord
- Similar program: SFitter \rightarrow next talk

Fittino input file syntax

<pre># masses massh0 massNeutralino1 massNeutralino2</pre>	112.888 GeV +- 0 97.7662 GeV +- 0 184.345 GeV +- 0).05 GeV +- 1.3 Ge).05 GeV +- 0.4 Ge).08 GeV +- 1.2 Ge	eV eV eV	
<pre># edges edge 3 massNeutralino1 ma</pre>	assSupL massNeutr	calino2 449.679	GeV +- 4.9 GeV +- 4.5 G	eV alias 1
<pre># cross sections sigma (ee -> Z h0, 500 (sigma (ee -> Chargino1 (sigma (ee -> Neutralino2</pre>	€eV, -0.8, -0.6) Thargino1~, 500 G Neutralino2, 50	GeV, -0.8, -0.6) 00 GeV, -0.8, -0.6	13.6286 fb +- 0.27 fb 5)	alias 1 alias 2 alias 3
<pre># branching ratios BR (h0 -> Bottom Bottom BR (Chargino1 -> Stau1 M BR (Neutralino2 -> Stau2 BR (Neutralino2 -> Stau2</pre>	/) 0. Jutau) _~ Tau) _ Tau~)	7621 +- 0.019	alias 1 alias 2 alias 3 alias 4	
<pre># sum of branching ratios brsum (br_3 br_4)</pre>	3		alias 1	
<pre># topological cross sect: xsbr (sigma_2 br_2 br_2 xsbr (sigma_3 brsum_1)</pre>	.ons) 34.983 28.815	38 fb +- 0.70 fb 58 fb +- 0.56 fb	alias 1 alias 2	

many further options to provide inputs and steer fitting behavior

Simulated annealing

Fitting in high-dimensional space is a delicate business.

In some cases, MINUIT turned out to be insufficient for minimization (local minima) and error estimation (too complex correlations).

Simulated annealing has proven to be a robust algorithm.

Fit strategy:

- 1. Sim. ann. minimization
- 2. MINUIT fit with start values from sim. ann.
- 3. Covariance matrix from many fits with smeared inputs

Disadvantage: CPU intensive (but these days we have the grid!)

Colliders to explore SUSY

Large Hadron Collider (LHC):

- high mass reach (several TeV) for squarks+gluinos
- colorless sparticles mainly through cascades
- modest accurary on masses 1-10 %
- rates subject to QCD/PDF uncertainties

International Linear Collider (ILC):

- precise spectroscopy: masses 0.1-1 % up to ∑ m = 1 TeV
- polarized cross-sections usable: ~ 1 %

An example spectrum

Some Fittino results

Used Fittino to determine precision of SUSY Lagrangian parameters from LHC and ILC measurements

Input observables:

- masses from LHC (edges) and ILC
- polarized σ_{e+e-} at 400, 500 and 1000 GeV
- polarized σ_{e+e} x BR at 400, 500 and 1000 GeV

BR

All the details concerning the following results can be found in:

```
P. Bechtle, K. Desch, W. Porod, P. W. hep-ph/0511006
```

Fit assumptions

Without assuming a certain SUSY breaking scenario, the MSSM contains 105 parameters (masses, phases, mixing angles)

 \rightarrow infeasible to determine all of them

(technical difficulties, lack of sensitive observables)

Simplifying assumptions:

- no CP violation (all phases = 0)
- no mixing between generations
- no mixing within first two generations
- universality of same type sfermion mass parameters in first two generations
- \Rightarrow 18 SUSY parameters remain

MSSM fit

General MSSM fit: No assumption on SUSY breaking in the fit

Fit LE parameters to data and learn about SUSY breaking from extrapolation to high scale ("bottom-up approach")

Requires many precision measurements. Only possible with combined LHC and ILC inputs.

18 SUSY parameters (\rightarrow previous slide) + m_{top} fit performed for SPS1a' inspired scenario (Definition: http://spa.desy.de/spa)

MSSM fit uncertainties

Due to occasionally unreliable MINOS behavior, fit uncertainties are determined from ~ 1000 individual fits with smeared input values

 χ^2 distribution of the ~ 1000 fits expectation: 129.0 ± 0.7

MSSM fit

MSSM fit

Parameter	"True" value	Fit value	Uncertainty	Uncertainty	
			(exp.)	(exp.+theor.)	
$\tan\beta$	10.00	10.00	0.11	0.15	< 2 %
μ	$400.4~{\rm GeV}$	$400.4~{\rm GeV}$	$1.2 { m GeV}$	$1.3~{\rm GeV}$	_ /0
X_{τ}	$-4449. {\rm GeV}$	$-4449.~{\rm GeV}$	$20.~{\rm GeV}$	$29.~{\rm GeV}$	V A L
$M_{\tilde{e}_R}$	$115.60~{\rm GeV}$	$115.60~{\rm GeV}$	$0.13~{\rm GeV}$	$0.43~{\rm GeV}$	$A_{\rm t} = A_{\rm t} - \mu / \tan \beta$
$M_{\tilde{\tau}_R}$	$109.89~{\rm GeV}$	$109.89~{ m GeV}$	$0.32~{\rm GeV}$	$0.56~{\rm GeV}$	$X_{\rm b} = A_{\rm b} - \mu \tan \beta$
$M_{\tilde{e}_L}$	$181.30~{\rm GeV}$	$181.30~{\rm GeV}$	$0.06~{\rm GeV}$	$0.09~{\rm GeV}$	V A H 2
$M_{\tilde{\tau}_L}$	$179.54~{ m GeV}$	$179.54~{ m GeV}$	$0.12~{\rm GeV}$	$0.17~{ m GeV}$	$X_{\tau} = A_{\tau} - \mu \tan \beta$
X_{t}	$-565.7~{\rm GeV}$	$-565.7~{ m GeV}$	$6.3~{ m GeV}$	$15.8 \; \mathrm{GeV}$	
$X_{\rm b}$	-4935. GeV	$-4935.~{\rm GeV}$	1207. GeV	$1713. {\rm GeV}$	
$M_{\tilde{q}_R}$	$503. \mathrm{GeV}$	$504.~{\rm GeV}$	$12.~{\rm GeV}$	16. GeV	significant impact
$M_{\tilde{b}_{B}}$	$497.~{\rm GeV}$	$497.~{\rm GeV}$	8. GeV	16. GeV	significant impact
$M_{\tilde{t}_R}$	$380.9~{\rm GeV}$	$380.9~{\rm GeV}$	$2.5~{\rm GeV}$	$3.7~{\rm GeV}$	of theory uncertain
$M_{\tilde{q}_L}$	523. GeV	523. GeV	$3.2~{\rm GeV}$	$4.3~{\rm GeV}$	
$M_{\tilde{t}_L}$	$467.7~{\rm GeV}$	$467.7~{\rm GeV}$	$3.1~{\rm GeV}$	$5.1 { m GeV}$	
M_1	$103.27~{\rm GeV}$	$103.27~{ m GeV}$	$0.06~{\rm GeV}$	$0.14~{\rm GeV}$	
M_2	$193.45~{ m GeV}$	$193.45~{ m GeV}$	$0.08~{ m GeV}$	$0.13~{ m GeV}$	< 0.1 %
M_3	569. GeV	569. GeV	7. GeV	$7.4~{\rm GeV}$	
$m_{ m Arun}$	$312.0~{\rm GeV}$	$311.9~{\rm GeV}$	$4.3~{\rm GeV}$	$6.5~{\rm GeV}$	
$m_{ m t}$	$178.00~{\rm GeV}$	$178.00~{\rm GeV}$	$0.05~{\rm GeV}$	$0.12~{\rm GeV}$	
Correspond	ling values for the				
A_{τ}	$-445. {\rm GeV}$	$-445. {\rm GeV}$	$40.~{\rm GeV}$	$52.~{\rm GeV}$	
$A_{\rm t}$	-526. GeV	-526. GeV	$6.~{\rm GeV}$	$16. \mathrm{GeV}$	
$A_{\rm b}$	$-931. {\rm GeV}$	$-931. {\rm GeV}$	$1184. {\rm GeV}$	$1676. {\rm GeV}$	> 125 %
	χ^2 for unsn	neared observable	es: 2.1×10^{-5}		0 / 0

ant impact

y uncertainties

15

Extrapolation to high scale

Use fitted LE parameters and extrapolate to the high scale using RGE:

Compare behavior with expectations from SUSY breaking models

Extrapolation to high scale

130 % / 180 % A_b precision:

mSUGRA fit

If results from bottom-up approach point to an mSUGRA SUSY breaking mechanism, mSUGRA parameters can be fitted directly to the LE data.

Only 4¹/₂ parameters: tan β , m₀, m_{1/2}, A₀, sign(μ)

	SPS1a' value	Fitted value	$\Delta_{\rm LHC+ILC}$	$\Delta_{\rm LHC \ only}$
aneta	10.000	10.000	0.036	1.3
$M_0 \; ({\rm GeV})$	70.000	70.000	0.070	1.4
$M_{1/2} ({\rm GeV})$	250.000	250.000	0.065	1.0
$A_0 (\text{GeV})$	-300.0	-300.0	2.5	16.6
$sign(\mu)$ fixed				

Summary

- With Fittino a powerful tool is available to extract SUSY parameters from collider observables.
- LHC and ILC nicely complement one another to pin down the SUSY model. Stringent checks rely on inputs from both machines.
- Most parameters can be determined to the percent level, some can be measured even more precisely.
- In order to fully benefit from ILC precision, theoretical uncertainties need to be reduced.
- A_b sensitive observables are needed to improve precision.
- We are eagerly awaiting data from LHC and ILC.

Outlook

- Comparison study SFitter Fittino: Run both programs with exactly the same inputs and compare output.
- Enhance Fittino functionality to enable NMSSM parameter fits.