
dCache at FZK/GridKa

compiled for the preGDB meeting at
7 November @ CERN

Storage hardware plans

2006
• 4 Admin nodes (HA types)

– head node (pool manager jvm, admin jvm, http jvm, billing jvm)
– pnfs (jvm, pnfs postgres db, companion postgres db, srm postgres db)
– srm node (jvm)
– spare

• 10 gridftp door servers
• 33 disk pool servers

2007/2008
• 5 Admin nodes (HA types)

– head node (pool manager jvm, admin jvm, http jvm)
– pnfs (jvm, pnfs postgres db, companion postgres db)
– srm node (jvm, srm postgress db)
– billing (jvm, billing postgres db)
– spare

• gridftp doors capacity: 20 Gbit, 2 MB/stream
• disk pool servers capacity (per cpu core): 2 streams, 0.05 Gbit
• for FZK this means (4 GBmem and 1 Gb per server)

– 20 gftp servers
– 100 pool nodes (100 Gb and 10000 streams)

• dCache for disk pool management
• separate pool spaces for each VO (D1T1, D0T1, D1T0)
• TSM for tape management
• possibly separated dpm instances for disk-only and tape backed

jvw1

Slide 3

jvw1 Use the rough estimate of 5000 cpu cores in 2008 for LHC
Jos van Wezel, 11/6/2006

pooltypes by hardware

Pool types by function

A (T1D0):
• Input Write Buffer for raw data

(select via routing)
• Sizes according to expected input

stream
• separate set of pools
• dual location

B (T1D1):
• Input and output buffer for T1 and

T2 inter-traffic (e.g. AOD from T2,
replicas to T1)

• pools are sharing pool hosts with
type C and D

C (T0D1):
• Disk only
• Selected via path in dCache. For other paths

this pool is like type B

D (T1D0):
• locally produced data for which we are

custodian. Amount unclear but low tape
demand.

Pool host sharing: to better utilize installed hardware
Pools that receive data (write pools) have FC disks and a direct
connection to tape via FC
Pools that send data (read pools) have SATA disks and connect
to tape via tape storage groups of 4 to 5 pool nodes

All pool types (D0T1, D1T1, D1T0)

- Types B,C,D are
in fact the same
machines with the
exception of the
host writing to tape.
-Tape write hosts have
FC disk pools and
FC tape connection
-Tape buffering via pool

Input buffer pool (A)

•Dedicated pool to
accept T0 to T1 data
•WAN buffer
•48 hrs buffer
•Redundant in 2 locations
•Redundant tape connect
•Possibly at 10Gbit per node
•No pinning allowed

 private net
 public net

INTERNET CLUSTER

TSM server

dCache head node

Ta
pe

 m
et

a
da

ta
dC

ac
he

 m
et

a
da

ta

Tape library via
Fibre Channel

Fibre
Channel

Ta
pe

 d
at

a

9/28/2006

 FZK

other pools

Pool node set B,C,D

9/27/2006

FZK/GridKa
29/08/2006

 private net
 public net

Tape connected
via FC

Tape read data

tape data flow

INTERNET CLUSTER

Tape Read data

TSM server

dCache head node

Ta
pe

 m
et

a
da

ta
dC

ac
he

 m
et

a
da

ta

- Group of nodes that
read/write disk-only
and read from tape
- Dedicated node(s) to
write to tape. Number
can be adapted (for the
tape0 tape1 transition?)

All pool types (D0T1, D1T1, D1T0)
external connection via pp copy

- Types B,C,D are
in fact the same
machines with the
exception of the
host writing to tape.
-Tape write hosts have
FC disk pools and
FC tape connection
-Tape buffering via pool

WAN connect via separate PP pool set

• Copy through function of dCache
• Allows incoming data to be forwarded to a different (internal) pool.

– available in version 1.7
– The reverse is likely also possible

• Traffic from extern is handled with a dedicated set of nodes
– select on the basis of the path if data goes to tape also (or it just passes on)

• Pool2pool setup (F) compared with ‘all connected’ (A)
– F: reduced number of hosts with external connection
– F: hosts cannot do much else and must be maintained. Need ~10 forwarder

hosts (500 MB/s) not counting redundancy: 22k euro
– A: with ~100 pool nodes extra ports needed: 25k euro

• It looks like ‘all connected’ is the better option

TSM (meta)data flow with storage agents

Storage Agent | TSS | dCache

TSM Session Server
dcache to tape interface

• Uses the dCache pools as tape buffer
• Interfaces directly with TSM via its API

– the API libs come with the TSM software
• Single executable, documentation ‘tss –-help’
• Fan out for all dpm to tape activities

– single session to the TSM server
– multiple tape flush/retrieve/rename/log/queries

• Runs on the TSM clients, storage agent or on the server proper
• Plug-in replacement for the TSM backend that comes with dCache
• Sends different type of data to different tape sets

– if known from dcache ‘tag’
– groups data that are likely to be recalled together

• Queues multiple requests (no state is kept, dpm must re-queue if needed)
– support from DPM on recall needed
– if possible also for stores

• Allows to store an exact image of the global name space on tape
– store the ‘site file name’
– decoupling of disk pool manager and tape backend
– needs ‘rename’ support of the dpm

• Before SC4: max 40 MB/s on 8 drives and 1 server
• During SC4: max 250 MB/s on 8 drives and 8 STAs

– working number for planning is 30 MB/s per drive

Enhancements

Reading
• Sort recall order on tape file sequence

– needs support of the storage manager
Writing
• Improve throughput (LTO3/LTO4)

– decoupling reads and writes
– Include sizing estimates on write
– throttle or stop writes based on node IO load

Support for xrootd
– can use the same interface
– planned for early 2007

10 Gb networking
– may use the Ethernet again for tape operations

Improved Scheduling
– TSS to TSS communication needed?
– support from storage manager needed

Implement Disk staging?

Unresolved (dCache oriented)

• Glue → SRM → Path / Token?
– need to have fixed paths

• Disk space consolidation
– we now have pools all over the place
– deleting data, moving data

• Disk in front of tape
– how is this to be implemented

• 10 Gbit on servers
– that’s the complete LCG MOU throughput of GridKa on 1 single machine!! (in theory)

• Copy through mode (P2Pcopy)
– to provide buffering (WAN/tape)

• Firewall issues
– third party put mode goes through the NAT if you have a private net

• Stability issues
– seems to be resolved

• tcp/ip settings (buffer sizes, keepalive etc)
• 2 dcache instances?: tape and disk-only

Site considerations

• classes implementation should reflect actual storage costs (€€)
– quality x access time x costs = storage class (SA?)

• default storage class should be most expensive
– (e.g. reduce fair share of VO)

• should be convertible with little admin effort (i.e. no data moves)
– make room on demand (D1T1 to D1T0 and v.v.)
– preset specific processing patterns

• D1T1 how large is d in T to D
– see above: need tools to convert D1T0 to D1T1 space and back

• what path to use for a given class: is storage space = path?
– FZK uses

• tape backed: $VoName/
• disk-only: $VoName/diskonly/

• available space (disk and tape) must be reported correctly
– ‘gap’ space in dcache
– reserved space on disk (could be fs specific)
– how large is tape space

• pinning on disk is left completely to the user/experiment
– expect users/experiments to request status (pinned vs available space)

• D1T0 to D1T1 transition will consume more tape drives

