=1

G‘dea

dCache at FZK/GridKa

compiled for the preGDB meeting at
/ November @ CERN

jvwl

Storage hardware plans

» dCache for disk pool management

* separate pool spaces for each VO (D1T1, DOT1, D1T0)

* TSM for tape management

» possibly separated dpm instances for disk-only and tape backed

2006

. 4 Admin nodes (HA types)
— head node (pool manager jvm, admin jvm, http jvm, billing jvm)
— pnfs (jvm, pnfs postgres db, companion postgres db, srm postgres db)
— srm node (jvm)
— spare
. 10 gridftp door servers
. 33 disk pool servers

2007/2008
. 5 Admin nodes (HA types)

— head node (pool manager jvm, admin jvm, http jvm)
pnfs (jvm, pnfs postgres db, companion postgres db)
— srm node (jvm, srm postgress db)
billing (jvm, billing postgres db)
— spare
. gridftp doors capacity: 20 Gbit, 2 MB/stream
. disk pool servers capacity (per cpu core): 2 streams, 0.05 Gbit

. for FZK this means (4 GBmem and 1 Gb per server)
— 20 dftp servers
— 100 pool nodes (100 Gb and 10000 streams)

=1

GridKka _/

Slide 3

jvwil Use the rough estimate of 5000 cpu cores in 2008 for LHC
Jos van Wezel, 11/6/2006

==

pooltypes by hardware Gricka _/

9 pool nodes with 4 pool nodes with 9 pool nodes with 9 pools 20 pool nodes with
15 pools 4 pools each gridftp doors 4 pools each

nfi
(D
nufi
(DD

Y - C.ID.C]D

= =]

(0 (0 EI[I]H
[0 (0 EE{I]H

FASIT7002x 18 TB FASIT7002x 18 TB DDN 85001 x40 TB NEC 52800 10x 18.5TB

=1

Pool types by function Gridka _/
A (T1DO): C (TOD1):
« Input Write Buffer for raw data gisik ‘i”g’ o dCache. For ofher oath
(select via routing) this pool is liKe type B
» Sizes according to expected input
stream D (T1DO):
« separate set of pools * locally produced data for which we are
« dual location gléfrt](;?]lgn. Amount unclear but low tape
B (T1D1):

Input and output buffer for T1 and
T2 inter-traffic (e.g. AOD from T2,
replicas to T1)

pools are sharing pool hosts with
type C and D

Pool host sharing: to better utilize installed hardware

Pools that receive data (write pools) have FC disks and a direct
connection to tape via FC

Pools that send data (read pools) have SATA disks and connect
to tape via tape storage groups of 4 to 5 pool nodes

All pool types (DOT1, D1T1, D1T0)

T2 and Internet
10 Gb
TO/T1 OPN
10 Gb

- Types B,C,D are
in fact the same

*

 I—

dCache head node

L

 I—

SRM node
gridka-dcache.fzk.de

machines with the
exception of the

host writing to tape.
-Tape write hosts have
FC disk pools and

FC tape connection

7

-Tape buffering via pool

disk only R + W
tape R

=1

GridKka _/

e private Ne tem—
public net

To Worker nodes

=1

Input buffer pool (A) Gridka _/

e private Netw—
public net
Fibre
Channel

*Dedicated pool to

accept TO to T1 data

*WAN buffer

*48 hrs buffer

*Redundant in 2 locations
*Redundant tape connect
*Possibly at 10Gbit per node
*No pinning allowed

T3 e

TSM server

dCache head node

Tape library via
Fibre Channel

EF
Pool node set B,C,D GridKka _/

e DrivVate NEtem—
public net

—p tape data flow

Tape\’eadda

'y ff Ef
- Group of nodes that = E—
read/write disk-only e TS server
and read from tape @@ dcmh -
- Dedicated node(s) to Tape connected

via FC

write to tape. Number
can be adapted (for the
tape0 tape1 transition?)

T2 and Intermnet
10 Gb
TO/T1 OPN
10 Gb

- Types B,C,D are

in fact the same
machines with the
exception of the

host writing to tape.
-Tape write hosts have
FC disk pools and

FC tape connection
-Tape buffering via pool

All pool types (DOT1, D1T1, D1TO)
external connection via pp copy

e o=
dCache head node
N

SRM node
gridka-dcache.fzk.de

Copy Pools

=1

GridKka _/

— DrVALE N —
public net

e

i

To Worker nodes

tape R + W disk f:g:l?w tape W
— —

g — " g—
v4 A v
OO
B (@ D

=1

WAN connect via separate PP pool set ~ “2g<2 ~

Copy through function of dCache
Allows incoming data to be forwarded to a different (internal) pool.
— available in version 1.7
— The reverse is likely also possible
Traffic from extern is handled with a dedicated set of nodes
— select on the basis of the path if data goes to tape also (or it just passes on)
Pool2pool setup (F) compared with ‘all connected’ (A)
— F: reduced number of hosts with external connection

— F: hosts cannot do much else and must be maintained. Need ~10 forwarder
hosts (500 MB/s) not counting redundancy: 22k euro

— A: with ~100 pool nodes extra ports needed: 25k euro
It looks like ‘all connected’ is the better option

@ TSM

%Glient

@ TSM

%olient

J

TSM
client

TSM (meta)data flow with storage agents

TSM
storage agent

e,
s
ey

SAN (tape only)

TSM
storage agent TSM

storage agent

% % Data

/D

Data
Meta-Data

Storage Agent | TSS | dCache

==

Gridka _/

TSM server
&
library manager

S

©

Tape Library

osssssssss» Fibre Channel
oammesssmme Fthernet

ossssssssss Fthernet

TSM Session Server
dcache to tape interface

Uses the dCache pools as tape buffer
Interfaces directly with TSM via its API
— the API libs come with the TSM software
Single executable, documentation ‘tss —help’
Fan out for all dpm to tape activities
— single session to the TSM server
— multiple tape flush/retrieve/rename/log/queries
Runs on the TSM clients, storage agent or on the server proper
Plug-in replacement for the TSM backend that comes with dCache
Sends different type of data to different tape sets
— if known from dcache ‘tag’
— groups data that are likely to be recalled together
Queues multiple requests (no state is kept, dpm must re-queue if needed)
— support from DPM on recall needed
— if possible also for stores
Allows to store an exact image of the global name space on tape
— store the ‘site file name’
— decoupling of disk pool manager and tape backend
— needs ‘rename’ support of the dpm

Before SC4: max 40 MB/s on 8 drives and 1 server

During SC4: max 250 MB/s on 8 drives and 8 STAs
— working number for planning is 30 MB/s per drive

=1

Gridka _/

Enhancements

Reading
« Sort recall order on tape file sequence

— needs support of the storage manager
Writing
* Improve throughput (LTO3/LTO4)

— decoupling reads and writes

— Include sizing estimates on write

— throttle or stop writes based on node IO load
Support for xrootd

— can use the same interface

— planned for early 2007
10 Gb networking

— may use the Ethernet again for tape operations
Improved Scheduling

— TSS to TSS communication needed?

— support from storage manager needed

Implement Disk staging?

=1

GridKka _/

=1

Unresolved (dCache oriented) <<=~

Glue — SRM — Path / Token?
— need to have fixed paths
Disk space consolidation
— we now have pools all over the place
— deleting data, moving data
Disk in front of tape
— how is this to be implemented
10 Gbit on servers
— that’s the complete LCG MOU throughput of GridKa on 1 single machine!! (in theory)
Copy through mode (P2Pcopy)
— to provide buffering (WAN/tape)
Firewall issues
— third party put mode goes through the NAT if you have a private net
Stability issues
— seems to be resolved
tcp/ip settings (buffer sizes, keepalive etc)
2 dcache instances?: tape and disk-only

Site considerations

classes implementation should reflect actual storage costs (€€)
— quality x access time x costs = storage class (SA?)
default storage class should be most expensive
— (e.g. reduce fair share of VO)
should be convertible with little admin effort (i.e. no data moves)
— make room on demand (D1T1 to D1TO and v.v.)
— preset specific processing patterns
D1T1 how largeisdin Tto D
— see above: need tools to convert D1T0 to D1T1 space and back
what path to use for a given class: is storage space = path?

— FZK uses

tape backed: $VoName/
disk-only: $VoName/diskonly/

available space (disk and tape) must be reported correctly

— ‘gap’ space in dcache

— reserved space on disk (could be fs specific)

— how large is tape space
pinning on disk is left completely to the user/experiment

— expect users/experiments to request status (pinned vs available space)
D1T0 to D1T1 transition will consume more tape drives

=1

Gridka _/

