
Advanced Software Development & Engineering

1

Design Patterns

Ruben Leivas Ledo (IT-IS)
Brice Copy (IT-AIS)

CERN – Geneva (CH)

Advanced Software Development & Engineering

2

Introduction

● About Patterns
– The idea of patterns
– What is a Pattern?
– Pattern Definitions
– Why Patterns?
– Patterns Elements and Forms

● Canonical Pattern Form
● GoF Pattern Form
● Comparison

Advanced Software Development & Engineering

3

The Idea of Patterns

● Designing Object Oriented SW is HARD but,
making it reusable is even HARDER!

Erich Gamma
● Unfortunately we live in a world where is

“basic” create reusable applications

Advanced Software Development & Engineering

4

The Idea of Patterns

● How to become a “Master of Chess”
– Learning the rules.

● Name of the figures, allowed movements, geometry and table chess
orientation.

– Learning the principles
● Value of the figures, strategic movements

– BUT….
● Being as good as Kasparov means studying, analyzing, memorized

and constantly applied the matches of other Masters

– There are hundreds of this matches

Advanced Software Development & Engineering

5

The Idea of Patterns

● How to become a SW Master
– Learning the rules.

● Algorithms, data structures, programming languages, etc.

– Learning the principles
● Structural programming, Modular programming, Object Oriented,

etc.

– BUT….
● Being as good as Kasparov means studying, analyzing, memorized

and constantly applied the “solutions” of other Masters

– There are hundreds of these solutions (~patterns)

Advanced Software Development & Engineering

6

The Idea of Patterns

● Each pattern describes a problem that happens
several times in our environment, offering for it
a solution in a way that it can be applied one
million times without being the same twice.

● Christopher Alexander (1977)

Advanced Software Development & Engineering

7

Patterns

● What is a Pattern?
– A Solution for a problem in a particular context.
– Recurrent (applied to other situations within the

same context)
– Learning tool
– With a Name

● Identifies it as unique.
● Common for the users community. (SIMBA)

Advanced Software Development & Engineering

8

Motivation of Patterns

● Capture the experience of the experts and make them
accessible to the “mortals”

● Help the SW engineers and developers to understand
a system when this is documented with the patters
which is using

● Help for the redesign of a system even if it was not
assumed originally with them

● Reusability
– A framework can support the code reusability

Advanced Software Development & Engineering

9

So… Why Patterns?

● Do you need more hints?
● Designing Object Oriented SW is HARD but, making it

reusable is even HARDER!
– Why not gather and document solutions that have worked in

the past for similar problems applied in the same context?
– Common tool to describe, identify and solve recurrent

problems that allows a designer to be more productive
– And the resulting designs to be more flexible and reusable

Advanced Software Development & Engineering

10

Types of Software Patterns

● Riehle & Zullighoven (Understanding and Using
Patterns in SW development)

● Conceptual Pattern
– Whose form is described by means of terms and concepts

from the application domain.

● Design Pattern
– Whose form is described by means of SW design constructs

(objects, classes, inheritance, etc.)

● Programming Pattern
– Whose form is described by means of programming

language constructs

Advanced Software Development & Engineering

11

Gang Of Four

● There are several Design Patterns Catalogue
● Most of the Designers follow the book Design

Patterns: Elements of Reusable Object
Oriented Software
– E. Gamma, R. Helm, R. Johnson, J. Vlissides.

Advanced Software Development & Engineering

12

Classification of Design Patterns

• Purpose (what a pattern
does)
– Creational Patterns

• Concern the process of
Object Creation

– Structural Patterns
• Deal with de Composition

of Classes and Objects
– Behavioral Patterns

• Deal with the Interaction
of Classes and Objects

• Scope – what the
pattern applies to
– Class Patterns

• Class, Subclass
relationships

• Involve Inheritance reuse
– Object Patters

• Objects relationships
• Involve Composition

reuse

Advanced Software Development & Engineering

13

Essential Elements of Design Pattern

● Pattern Name
– Having a concise, meaningful name improves

communication between developers
● Problem

– Context where we would use this pattern
– Conditions that must be met before this pattern

should be used

Advanced Software Development & Engineering

14

Essential Elements of Design Pattern

● Solution
– A description of the elements that make up the design

pattern
– Relationships, responsibilities and collaborations
– Not a concrete design or implementation. Abstract

● Consequences
– Pros and cons of using the pattern
– Includes impacts of reusability, portability…

Advanced Software Development & Engineering

15

Pattern Template

● Pattern Name and Classification
● Intent

– What the pattern does

● Also Known As
– Other names for the pattern

● Motivation
– A scenario that illustrates where the pattern would be useful

● Applicability
– Situations where the pattern can be used

Advanced Software Development & Engineering

16

Pattern Template - II

● Structure
– Graphical representation of the pattern

● Participants
– The classes & objects participating in the pattern

● Collaborations
– How to do the participants interact to carry out their

responsibilities?

● Consequences
● Implementations

– Hints and Techniques for implementing it

Advanced Software Development & Engineering

17

Pattern Template - III

● Sample Code
– Code fragments for a Sample Implementation

● Known Uses
– Examples of the pattern in real systems

● Related Patterns
– Other patterns closely related to the patterns

Advanced Software Development & Engineering

18

Pattern Groups (GoF)

Advanced Software Development & Engineering

19

Let’s go to the kernel !!

● Taxonomy of Patterns
– Creational Patterns

● They abstract the process of instances creation
– Structural Patterns

● How objects and classes are used in order to get bigger
structures

– Behavioral Patterns
● Characterize the ways in which classes or objects

interact and distribute responsibilities

Advanced Software Development & Engineering

20

Creational Patterns

● Deal with the best way to create instances of
objects

Listbox list = new Listbox()

● Our program should not depend on how the
objects are created

● The exact nature of the object created could
vary with the needs of the program
– Work with a special “creator” which abstracts the

creation process

Advanced Software Development & Engineering

21

Creational Patterns (II)

● Factory Method
– Simple decision making class that returns one of several possible

subclasses of an abstract base class depending on the data we provided

● Abstract Factory Method
– Interface to create and return one of several families of related objects

● Builder Pattern
– Separates the construction of a complex object from its representation

● Prototype Pattern
– Clones an instantiated class to make new instances rather than creating

new instances

● Singleton Pattern
– Class of which there can be no more than one instance. It provides single

global point of access to that instance

Advanced Software Development & Engineering

22

Structural Patterns

● Describe how classes & objects can be
combined to form larger structures
– Class Patterns: How inheritance can be used to

provide more useful program interfaces
– Object Patterns: How objects can be composed

into larger structures (objects)

Advanced Software Development & Engineering

23

Structural Patterns II

● Adapter
– Match interfaces of different classes

● Bridge
– Separates an object’s interface from its implementation

● Composite
– A tree structure of simple and composite objects

● Decorator
– Add responsibilities to objects dynamically

● Façade
– A single class that represents an entire subsystem

● Flyweight
– A fine-grained instance used for efficient sharing

● Proxy
– An object representing another object

Advanced Software Development & Engineering

24

Behavioral Patterns

● Concerned with communication between objects
● It’s easy for an unique client to use one abstraction
● Nevertheless, it’s possible that the client may need

multiple abstractions
● …and may be it does not know before using them

how many and what!
– This kind of Patters (observer, blackboard, mediator) will

allow this communication

Advanced Software Development & Engineering

25

Behavioral Patterns

● Chain of Responsibility
– A way of passing a request between a chain of objects

● Command
– Encapsulate a command request as an object

● Interpreter
– A way to include language elements in a program

● Iterator
– Sequentially access the elements of a collection

● Mediator
– Defines simplified communication between classes

● Memento
– Capture and restore an object's internal state

Advanced Software Development & Engineering

26

Behavioral Patterns III

● Observer
– A way of notifying change to a number of classes

● State
– Alter an object's behavior when its state changes

● Strategy
– Encapsulates an algorithm inside a class

● Template
– Defer the exact steps of an algorithm to a subclass

● Visitor
– Defines a new operation to a class without change

Advanced Software Development & Engineering

27

Examples applied to real life

Advanced Software Development & Engineering

28

Creational Pattern Example

● Factory
– Define an interface for creating an object, but let subclasses decide which class

to instantiate.
– Factory Method lets a class defer instantiation to subclasses.

● Participants
– Product (Page)

● defines the interface of objects the factory method creates
– ConcreteProduct (SkillsPage, EducationPage, ExperiencePage)

● implements the Product interface
– Creator (Document)

● declares the factory method, which returns an object of type Product. Creator may
also define a default implementation of the factory method that returns a default
ConcreteProduct object.

● may call the factory method to create a Product object.
– ConcreteCreator (Report, Resume)

● overrides the factory method to return an instance of a ConcreteProduct.

Advanced Software Development & Engineering

29

Creational Pattern Examples

• UML Diagram

Advanced Software Development & Engineering

30

Sample Code (Factory)

• // Factory Method pattern –

using System;
using System.Collections;

// "Product"

abstract class Product
{
}

// "ConcreteProductA"

class ConcreteProductA :
Product
{
}

// "ConcreteProductB"

class ConcreteProductB :
Product
{ }

• // "Creator"

abstract class Creator
{
// Methods
abstract public Product

FactoryMethod();
}

// "ConcreteCreatorA"

class ConcreteCreatorA :
Creator
{
// Methods
override public Product

FactoryMethod()
{
return new

ConcreteProductA();
}

}

Advanced Software Development & Engineering

31

Sample Code (Factory)

• // "ConcreteCreatorB"

class ConcreteCreatorB :
Creator
{

// Methods
override public Product

FactoryMethod()
{

return new
ConcreteProductB();

}
}

• class Client
{
public static void Main(

string[] args)
{

// FactoryMethod returns
ProductA

Creator c = new
ConcreteCreatorA();

Product p =
c.FactoryMethod();

Console.WriteLine(
"Created {0}", p);

// FactoryMethod returns
ProductB

c = new
ConcreteCreatorB();

p = c.FactoryMethod();
Console.WriteLine(

"Created {0}", p);

Advanced Software Development & Engineering

32

Sample Code (Factory)

• using System;
using System.Collections;

// "Product"

abstract class Page
{
}

// "ConcreteProduct"

class SkillsPage : Page
{
}

// "ConcreteProduct"

class EducationPage : Page
{
}

// "ConcreteProduct"

class ExperiencePage : Page
{
}

• // "ConcreteProduct"

class IntroductionPage : Page
{
}
// "ConcreteProduct"

class ResultsPage : Page
{
}

// "ConcreteProduct"

class ConclusionPage : Page
{
}

// "ConcreteProduct"

class SummaryPage : Page
{
}

Advanced Software Development & Engineering

33

Sample Code (Factory)

● // "Creator"

abstract class Document
{
// Fields
protected ArrayList pages = new ArrayList();

// Constructor
public Document()
{

this.CreatePages();
}

// Properties
public ArrayList Pages
{

get{ return pages; }
}

// Factory Method
abstract public void CreatePages();

}

Advanced Software Development & Engineering

34

Sample Code (Factory)

• // "ConcreteCreator"

class Resume : Document
{

// Factory Method
•

override public void
CreatePages()

{
pages.Add(new

SkillsPage());
pages.Add(new

EducationPage());
pages.Add(new

ExperiencePage());
}

}

• // "ConcreteCreator"

class Report : Document
{
// Factory Method

•
override public void

CreatePages()
{

pages.Add(new
IntroductionPage());

pages.Add(new ResultsPage()
);

pages.Add(new
ConclusionPage());

pages.Add(new SummaryPage()
);

pages.Add(new
BibliographyPage());
}

}

Advanced Software Development & Engineering

35

Sample Code (Factory)

● /// <summary>
/// FactoryMethodApp test
/// </summary>
class FactoryMethodApp
{
public static void Main(string[] args)
{

Document[] docs = new Document[2];

// Note: constructors call Factory Method
docs[0] = new Resume();
docs[1] = new Report();

// Display document pages
foreach(Document document in docs)
{

Console.WriteLine("\n" + document + " ------- ");
foreach(Page page in document.Pages)
Console.WriteLine(" " + page);

}
}

}

Advanced Software Development & Engineering

36

Structural Pattern Example

● Adapter
– Convert the interface of a class into another interface clients expect.
– Adapter lets classes work together that couldn't otherwise because of

incompatible interfaces

● Participants
– Target (ChemicalCompound)

● defines the domain-specific interface that Client uses.
– Adapter (Compound)

● adapts the interface Adaptee to the Target interface.
– Adaptee (ChemicalDatabank)

● defines an existing interface that needs adapting.
– Client (AdapterApp)

● collaborates with objects conforming to the Target interface.

Advanced Software Development & Engineering

37

Sample Code (Adapter)

• UML Diagram

Advanced Software Development & Engineering

38

Sample Code (Adapter)

• using System;

// "Target"

class ChemicalCompound
{
// Fields
protected string name;
protected float boilingPoint;
protected float meltingPoint;
protected double

molecularWeight;
protected string

molecularFormula;

// Constructor
public ChemicalCompound
(string name)

{
this.name = name;

}

• // Properties
public float BoilingPoint
{

get{ return boilingPoint; }
}

public float MeltingPoint
{

get{ return meltingPoint; }
}

public double MolecularWeight
{

get{ return molecularWeight;
}
}

public string MolecularFormula
{

get{ return
molecularFormula; }
}

}

Advanced Software Development & Engineering

39

Sample Code (Adapter)

● // "Adapter"

class Compound : ChemicalCompound
{

// Fields
private ChemicalDatabank bank;

// Constructors
public Compound(string name) : base(name)
{

// Adaptee
bank = new ChemicalDatabank();
// Adaptee request methods
boilingPoint = bank.GetCriticalPoint(name, "B");
meltingPoint = bank.GetCriticalPoint(name, "M");
molecularWeight = bank.GetMolecularWeight(name);
molecularFormula = bank.GetMolecularStructure(name);

}

// Methods
public void Display()
{

Console.WriteLine("\nCompound: {0} ------ ",name);
Console.WriteLine(" Formula: {0}",MolecularFormula);
Console.WriteLine(" Weight : {0}",MolecularWeight);
Console.WriteLine(" Melting Pt: {0}",MeltingPoint);
Console.WriteLine(" Boiling Pt: {0}",BoilingPoint);

}
}

Advanced Software Development & Engineering

40

Sample Code (Adapter)

• // "Adaptee"

class ChemicalDatabank
{

// Methods -- the Databank 'legacy API'
public float GetCriticalPoint(string

compound, string point)
{

float temperature = 0.0F;
// Melting Point
if(point == "M")
{

switch(compound.ToLower())
{

case "water": temperature = 0.0F;
break;

case "benzene" : temperature =
5.5F; break;

case "alcohol": temperature = -
114.1F; break;

}
}
// Boiling Point
else
{

switch(compound.ToLower())
{

case "water": temperature =
100.0F;break;

case "benzene" : temperature =
80.1F; break;

case "alcohol": temperature =
78.3F; break;

}
}

public string GetMolecularStructure(
string compound)

{
string structure = "";
switch(compound.ToLower())
{
case "water": structure =

"H20"; break;
case "benzene" : structure =

"C6H6"; break;
case "alcohol": structure =

"C2H6O2"; break;
}
return structure;

}

public double GetMolecularWeight(
string compound)

{
double weight = 0.0;
switch(compound.ToLower())
{
case "water": weight = 18.015;

break;
case "benzene" : weight =

78.1134; break;
case "alcohol": weight =

46.0688; break;
}
return weight;

Advanced Software Development & Engineering

41

Sample Code (Adapter)

● /// <summary>
/// AdapterApp test application
/// </summary>
public class AdapterApp
{
public static void Main(string[] args)
{

// Retrieve and display water characteristics
Compound water = new Compound("Water");
water.Display();

// Retrieve and display benzene characteristics
Compound benzene = new Compound("Benzene");
benzene.Display();

// Retrieve and display alcohol characteristics
Compound alcohol = new Compound("Alcohol");
alcohol.Display();

}
}

Advanced Software Development & Engineering

42

Behavioral Patterns Example

● Proxy
– Provide a surrogate or placeholder for another object to control access to it.

● Participants

– Proxy (MathProxy)
● maintains a reference that lets the proxy access the real subject. Proxy may refer to a Subject if

the RealSubject and Subject interfaces are the same.
● provides an interface identical to Subject's so that a proxy can be substituted for for the real

subject.
● controls access to the real subject and may be responsible for creating and deleting it.
● other responsibilites depend on the kind of proxy:

– remote proxies are responsible for encoding a request and its arguments and for sending the encoded
request to the real subject in a different address space.

– virtual proxies may cache additional information about the real subject so that they can postpone accessing
it. For example, the ImageProxy from the Motivation caches the real images's extent.

– protection proxies check that the caller has the access permissions required to perform a request.

– Subject (IMath)
● defines the common interface for RealSubject and Proxy so that a Proxy can be used anywhere a

RealSubject is expected.

– RealSubject (Math)
● defines the real object that the proxy represents.

Advanced Software Development & Engineering

43

Sample Code (Proxy)

• UML Diagram

Advanced Software Development & Engineering

44

Sample Code (Proxy)

• using System;
using System.Runtime.Remoting;

// "Subject"

public interface IMath
{
// Methods
double Add(double x, double y);
double Sub(double x, double y);
double Mul(double x, double y);
double Div(double x, double y);

}

// "RealSubject"

class Math : MarshalByRefObject, IMath
{
// Methods
public double Add(double x, double y)

{ return x + y; }
public double Sub(double x, double y)

{ return x - y; }
public double Mul(double x, double y)

{ return x * y; }
public double Div(double x, double y)

{ return x / y; }
}

• // Remote "Proxy Object"

class MathProxy : IMath
{
// Fields
Math math;
// Constructors
public MathProxy()
{
// Create Math instance in a different AppDomain
AppDomain ad = System.AppDomain.CreateDomain(

"MathDomain",null, null);
ObjectHandle o =
ad.CreateInstance("Proxy_RealWorld", "Math", false,
System.Reflection.BindingFlags.CreateInstance,
null, null, null,null,null);

math = (Math) o.Unwrap();
}

// Methods
public double Add(double x, double y)
{
return math.Add(x,y);

}
public double Sub(double x, double y)
{
return math.Sub(x,y);

}
public double Mul(double x, double y)
{
return math.Mul(x,y);

}
public double Div(double x, double y)
{
return math.Div(x,y);

}
}

Advanced Software Development & Engineering

45

Sample Code (Proxy)

● public class ProxyApp
{

public static void Main(string[] args)
{

// Create math proxy
MathProxy p = new MathProxy();

// Do the math
Console.WriteLine("4 + 2 = {0}", p.Add(4, 2));
Console.WriteLine("4 - 2 = {0}", p.Sub(4, 2));
Console.WriteLine("4 * 2 = {0}", p.Mul(4, 2));
Console.WriteLine("4 / 2 = {0}", p.Div(4, 2));

}
}

Advanced Software Development & Engineering

46

Inversion of Control Pattern
(IoC) a.k.a. Dependency injection

● Basically, a multi-purpose factory
● A 4GL replacement, exploits metadata from

your code to provide a declarative environment
● Configuring instead of coding

– Encapsulates complexity
– Lets you expose only “key” parameters that you

may change

Advanced Software Development & Engineering

47

IoC : Advantages

● Forces you to write clean code
– No more complex dependencies
– For complex objects, use factories
– IoC will wire objects for you (matching object

names to method parameters for instance)
– Destruction of your objects is also handled

● Saves you from writing boring code
– Calling new operators and getters/setters is both

error prone and very simple anyway

Advanced Software Development & Engineering

48

IoC Configuration sample

Aluminium_e

boxV_s

boxV

Let us imagine a complex geometry setup :
●A material (aluminium)
●A volume (a cube)
●A physical volume (yes, that cube)

Advanced Software Development & Engineering

49

IoC configuration sample
in GDML

<element name="Aluminium_e"
Z=" 13.0000" N=" 27" >

<atom type="A" unit="g/mol"
value=" 26.9815" />

</element>

<box lunit="cm" aunit="degree"
name="boxV_s"
x="20.0000" y="60.0000"
z="50.0000" />

<volume name="boxV">
<materialref ref="Aluminium_e"/>
<solidref ref="boxV_s"/>

</volume>

Advanced Software Development & Engineering

50

IoC configuration sample
in IoC XML

<bean name="Aluminium_e" class=”cern.mygdm.Material”>
<property name=”Z” value=”13.0000”/> /
<property name=”N” value=”27”/>
<property name=”A”>
<bean class=”cern.mygdm.Atom”>
<constructor-arg><value>A</value></constructor-arg>
<constructor-arg><value>g/mol</value></constructor-arg>
<constructor-arg><value>26.9815</value></constructor-arg>

</bean>
</property>
</bean>
<bean name="boxV_s" class=”cern.mygdm.Box”>
<property name=”lunit” value=”cm”/> /
<property name=”aunit” value=”degree”/>
<property name=”X” value=”20.0000”/>
<property name=”Y” value=”60.0000”/>
<property name=”Z” value=”50.0000”/>
<bean name="boxV" class=”cern.mygdm.PVolume”>
<property name=”solidref”><bean name=”boxV_s”/></property>
<property name=”materialref”><bean ref=”${material}”/></property>
</volume>

Advanced Software Development & Engineering

51

IoC configuration sample
Using your configuration

// Pseudo-code (only compiles in my head)
BeanFactory myFactory =

IoCFactory.read(“myVolume.xml”);

myFactory.setProperty(“material”,”ALUMINIUM_e”);
cern.mygdm.PVolume myVolume = myFactory.get(“boxV”);

// ...or you could change it like so
// assuming you defined a “LEAD” material
myFactory.setProperty(“material”,”LEAD_e”);
cern.mygdm.PVolume myVolume = myFactory.get(“boxV”);

Advanced Software Development & Engineering

52

IoC configuration sample
What's in it for you ?

● It is more verbose but...
● Totally generic -> easy integration
● Replaces code by configuration
● Configurable (pre and post process)
● Can be nested with other configurations
● No specific XML format maintenance (even

though they may be useful for conciseness)

Advanced Software Development & Engineering

53

IoC platforms

● Primarily Java, as it currently offers the richest
reflection mechanism (including interceptors
and runtime proxy generation)

● Your langage needs reflection some way or
another

● .NET somewhat supports this, but
development effort is slower at the moment

Advanced Software Development & Engineering

54

IoC frameworks

● Spring Framework
– A simple yet powerful java IoC framework
– A huge toolbox with very good default beans
– With aspect oriented programming support
– Comes with extensions for :

– JDBC / ORM frameworks
– Servlet API
– JMS
– Transaction management
– Etc...

– Spring.NET version – in the works

Advanced Software Development & Engineering

55

IoC frameworks (2)

● PICO container
– A basic but lightweight IoC library
– No built-in aspects support

● Apache Avalon's Fortress
● Castle for .NET (http://www.castleproject.org)

Advanced Software Development & Engineering

56

IoC Benefits

● Cleaner code, heavy usage of interfaces
● Lets you encapsulate complexity and make it

configurable (mini pluggable blackbox)
● Encourages teamwork by sharing object

models, not lines of code or libraries
● ... Like for all patterns, those advantages are

not obvious until you try it

Advanced Software Development & Engineering

57

Conclusion

● Software Design Patterns are NOT
– Restricted to Object Oriented designs
– Untested ideas/theories/inventions
– Solutions that have worked only once
– Abstract Principles
– Universally applicable for every context
– A “silver bullet” or a panacea

Advanced Software Development & Engineering

58

Conclusion

● Software Design Patterns are
– Recurring solutions to common design problems
– Concrete solutions to real world problems
– Context Dependants
– A literary form for documenting best practices
– Shared for the community
– Excessively hyped!!!!!

