Presentation "prerequisites"

The presentation doesn't go into too much details, but it might be useful to have:

General knowledge of distributed systems

Some experience with OO Programming

CERN School of Computing

Introduction to Enterprise Computing

Giovanni Chierico CERN (IT-AIS-HR)

Inverted CERN School of Computing

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 200

Some Java Experience

ERN Chool of Computing

Presentation Overview

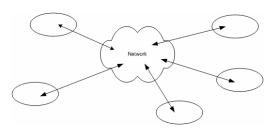
- · What is "Enterprise Computing"
- Common Problems
- Real World Solutions
- Common Patterns
 - Naming Services
 - Pooling
 - Transaction Management

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 200

Advanced Software Development Engineering

What is "Enterprise Computing"

Solving computing problems in a


- Distributed
- Multi-tier
- Server-centric environment.

Common in big companies (like CERN) where users access a variety of applications that share data and resources, often integrated with legacy systems.

Distributed

- Means that the "components" that make up our system could be living on different machines and communicate through the network
- Components must be able to find each other and to communicate effectively

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Advanced Software Development Engineering

Server centric


- Client "thin" and "standard" to simplify requirements and deployment
- Server implements the business logic
- Database offers standard data persistence and retrieval functionalities

... but sometimes the division is blurred

Multi-tier

- Many distributed schemas are possible (e.g. P2P)
- In an enterprise environment we can identify components having very different roles (client, server, database) and different requirements

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 200

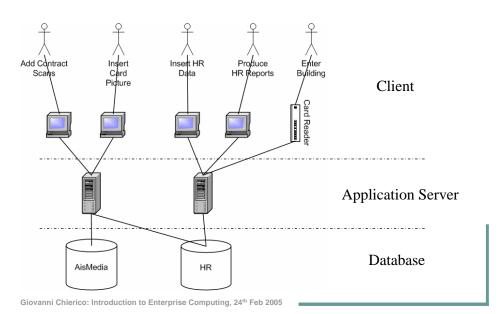
Advanced Software Development Engineeri

Common 3-tier architecture

- Client
 - Interfaces with the user
- 2. Server
 - Implements Business logic
 - Implements Middleware logic
- 3. EIS (Enterprise Information System)
 - Persistently stores data
 - Retrieve stored data

Examples

Presentation Overview



- Real World Solutions
- Common Patterns
 - Naming Services
 - Pooling
 - Transaction Management

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 200

Common Problems/Services

- Load balancing
- Transparent fail-over
- System integration
- Transactions management

Common Problems/Services

- Logging
- Threading
- Messaging
- Pooling
- Security
- Caching

CERN COMPUTING

Middleware

Presentation Overview

CERN School of Computing

- All these services together can be called Middleware because they don't implement our Business Logic, but yet they have to be present in our system
- Should be present in the Framework we use
- Should be more configured than implemented

What is "Enterprise Computing"

- Common Problems
- Real World Solutions

- Naming Services
- Pooling
- Transaction Management

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 20

Advanced Software Development Enginee

CERN School of Computing

Application Server

- Client uses remote interface
- •Remote Object is managed by Application Server
- Transparent use of middleware

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2009

•Reduced dependencies

Java Enterprise

J2EE (Java 2 Enterprise Edition) defines various technologies specifications (JAXP, JMS, JNDI, JTA, JSP, JDBC).

Various vendors (BEA, IBM, Oracle, JBoss) implement these specifications and compete in the Application Server market.

J2EE stack

Microsoft .NET

Web Container EJB Container Applet J2SE Application ient Containe

Similar services are provided by the .NET platform.

Of course there's no one-to-one strict correspondence...

MS.NET	J2EE
ASP	JSP/JSF
DCOM	RMI
MTS/COM+	EJB
ADO	JDBC
ADSI	JNDI
MSMQ	JMS
DTC	JTA/JTS

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 20

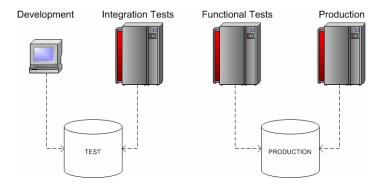
Naming Services

Presentation Overview

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 200

New in J2EE 1.4

- . Common Problems
- Real World Solutions
- Common Patterns
 - Naming Services
 - Pooling
 - Transaction Management

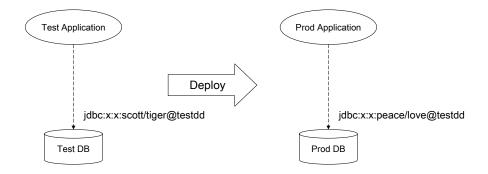


- Map human-friendly names to objects
 - DNS
 - File System
 - LDAP

Adding this indirection layer we gain flexibility and portability.

CERN School of Computing

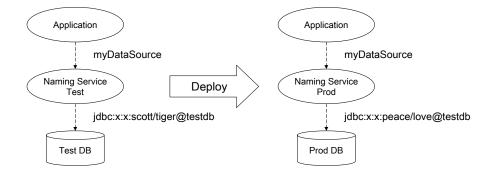
Development and Deployment



- Different Databases
- Different Hardware
- Different Operative Systems

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Deployment dilemma


- •There is a direct dependency between the application and the DB
- •We must produce different "executables" for Test and Production environments
- •Any change in the DB configuration will break our application

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2009

Advanced Software Development Engineering

Enterprise Deployment

- •No dependency between Application and DataBase
- •No need for different Application versions
- Easier to maintain
- •Separation of roles: Developer vs Application Server Administrator

Advanced Software Development Engineering

Java Naming: JNDI

Java Naming and Directory Interface

Direct Connection

```
Class.forName("oracle.jdbc.driver.OracleDriver");
Connection conn =
DriverManager.getConnection("jdbc:x:x:scott/tiger@testdd");
/* use the connection */
conn.close();
```

JNDI Connection

```
Context ctx = new InitialContext();
Object dsRef=ctx.lookup("java:comp/env/jdbc/mydatasource");
DataSource ds=(Datasource) dsRef;
Connection conn=ds.getConnection();
/* use the connection */
conn.close();
```

Advanced Software Development Engineering

CERN School of Computing

JNDI Configuration

using JBoss

- Application Server administrator manages this
- Application Server specific

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

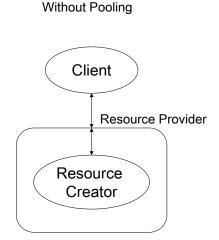
Advanced Software Development Engineering

CERN Computing

Pooling

- Pooling means creating a pool of reusable resources
- Greatly improves performance if creating the resource is expensive (compared to using it)
- . Should be completely *transparent* to the client

Presentation Overview


- What is "Enterprise Computing"
- Common Problems
- Real World Solutions
- Common Patterns
 - Naming Services
 - Pooling
 - Transaction Management

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2009

Pooling Schema

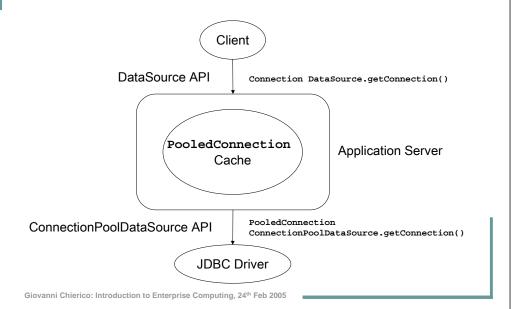
CERN School of Computing

Client

Resource Provider

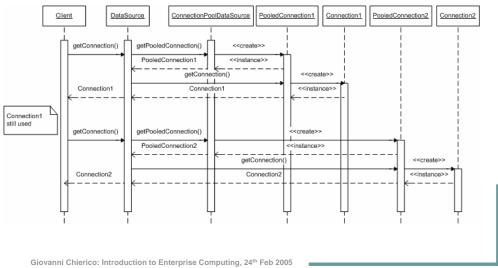
Pool Manager

Resource


Creator

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

C


Java Pooling (JDBC)

Java DataBase Connectivity

Pooling Sequence

Advanced Software Development Engineering

Java Code Example

JNDI Connection + Pooling

```
Context ctx = new InitialContext();
Object dsRef=ctx.lookup("java:comp/env/jdbc/mydatasource");
DataSource ds=(Datasource) dsRef;
Connection conn=ds.getConnection();
/* use the connection */
conn.close();
```

- Same code as before!
- Complexity completely hidden to developer
- •No need to change java sources when pooling parameters change

Advanced Software Development Engineering

CERN School of Computing

Pooling Configuration

with JBoss

<idle-timeout-minutes>15</idle-timeout-minutes>
</local-tx-datasource>

</datasources>

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Presentation Overview

Transaction Management

- What is "Enterprise Computing"
- Common Problems
- Real World Solutions
- Common Patterns
 - Naming Services
 - Pooling
 - Transaction Management

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

What is a transaction?

An atomic unit of work. The work in a transaction must be completed as a whole; if any part of the transaction fails, the entire transaction fails.

Very well know problem that has been "solved" in databases for a long time.

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 200

Advanced Software Development Engineering

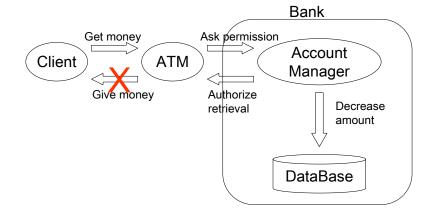
ACID properties

Atomic: the transaction must behave as a single unit of operation. No partial work to commit

Consistent: either creates a new valid state or rolls back to the previous one

SOlated: a transaction in process and not yet committed must not interfere from all other concurrent transactions

Durable: committed data is saved in a way that the state can be restored even in case of system failure

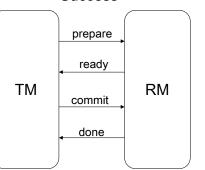

SO/IEC 10026-1:1992 Section 4

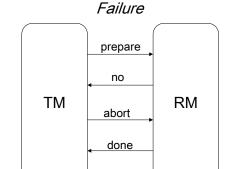
Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2009

Advanced Software Development Engineerin

CERN School of Computing

ATM Transaction example


We need to be able to manage distributed transaction to solve this class of problems.


CERN School of Computin

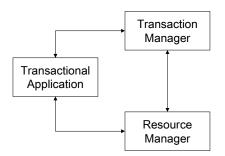
2-phase commit

- CERN School of C
- Transaction Manager [TM]
- Resource Manager [RM]

Success

A log is kept for all operations, to let the TM recover a valid state in case of system failure

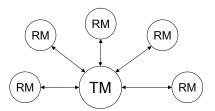
Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005


Advanced Software Development Engineering

CERN School of Computing

Java Transactions (JTA)

Java Transaction API


Manage transactions in a *programmatic* way: you are responsible for programming transaction logic into your application code, that is calling begin(), commit(), abort().

Context ic = new InitialContext();
UserTransaction ut = (UserTransaction) ic.lookup(strTransJndi);
ut.begin();
// access resources transactionally here
ut.commit();

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Distributed 2-phase commit

The TM repeats the 2-phase commit with every RM

- If the all RM answer "ready" the TM issues a global "commit"
- If at least one RM answers "no" the TM issues a global "abort"

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Advanced Software Development Engineering

J2EE Declarative Transactions

It's possible to specify at deploy time the transaction behavior.

The Application Server will *intercept* calls to the components and automatically begin/end the transaction on your behalf

Transaction types

<container-transaction>
 <method>
 <ejb-name>myComponent</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>

The J2EE application server manages different managed transaction types:

- •Required: always run in a transaction. Join the existing one or starts a new one
- RequiresNew: always starts a new transaction

</container-transaction>

- •Supports: joins the client transaction if any. Otherwise runs in no transaction
- •Mandatory: transaction must already be running. Otherwise throws exception
- •NotSupported: doesn't use transactions. Suspends client transaction if it exists
- •Never: cannot be involved in a transaction. Throw exception if client has one

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Advanced Software Development Engineering

CERN Computing

Questions?

Conclusions

- You can solve any programming problem with an extra level of indirection
- except the problem of too many levels of indirection
- There are frameworks that already solve the most common and complex problems
- Understand the solution. Use the framework.
- Don't reinvent the wheel

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 200

Advanced Software Development Engineering

Resources

- J2EE tutorial (http://java.sun.com/j2ee/1.4/docs/tutorial/doc/)
- $. \ \ \, JBoss\ Docs\ \ (http://docs.jboss.org/jbossas/jboss4guide/r2/html/) \\$
- Designing J2EE Apps
 (http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/DEA2eTOC.html)

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005