
Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Introduction to Enterprise 
Computing

Giovanni Chierico
CERN (IT-AIS-HR)

Inverted CERN School of Computing

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Presentation “prerequisites”

The presentation doesn’t go into too much 
details, but it might be useful to have:

● General knowledge of distributed systems
● Some experience with OO Programming
● Some Java Experience

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Presentation Overview

● What is “Enterprise Computing”
● Common Problems
● Real World Solutions
● Common Patterns

– Naming Services
– Pooling
– Transaction Management

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

What is “Enterprise 
Computing”

Solving computing problems in a
● Distributed
● Multi-tier
● Server-centric environment.

Common in big companies (like CERN) where users 
access a variety of applications that share data and 
resources, often integrated with legacy systems.



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Distributed

● Means that the “components” that make up our 
system could be living on different machines 
and communicate through the network

● Components must be able to find each other 
and to communicate effectively

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Multi-tier

● Many distributed schemas are possible (e.g. 
P2P)

● In an enterprise environment we can identify 
components having very different roles (client, 
server, database) and different requirements

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Server centric

● Client “thin” and “standard” to simplify 
requirements and deployment

● Server implements the business logic
● Database offers standard data persistence and 

retrieval functionalities

… but sometimes the division is blurred

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Common 3-tier architecture

1. Client
● Interfaces with the user

2. Server
● Implements Business logic
● Implements Middleware logic

3. EIS (Enterprise Information System)

● Persistently stores data
● Retrieve stored data



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Examples

Client

Application Server

Database

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Presentation Overview

● What is “Enterprise Computing”
● Common Problems
● Real World Solutions
● Common Patterns

– Naming Services
– Pooling
– Transaction Management

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Common Problems/Services
(I)

● Remote method invocation
● Load balancing
● Transparent fail-over
● System integration
● Transactions management

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Common Problems/Services
(II)

● Logging
● Threading
● Messaging
● Pooling
● Security
● Caching



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Middleware

● All these services together can be called 
Middleware because they don’t implement our 
Business Logic, but yet they have to be 
present in our system

● Should be present in the Framework we use
● Should be more configured than implemented

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Presentation Overview

● What is “Enterprise Computing”
● Common Problems
● Real World Solutions
● Common Patterns

– Naming Services
– Pooling
– Transaction Management

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Application Server

•Client uses remote interface
•Remote Object is managed by Application Server
•Transparent use of middleware
•Reduced dependencies

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Java Enterprise

J2EE (Java 2 Enterprise Edition) defines various 
technologies specifications (JAXP, JMS, JNDI, 
JTA, JSP, JDBC).

Various vendors (BEA, IBM, Oracle, JBoss) 
implement these specifications and compete in 
the Application Server market.



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

J2EE stack
Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Microsoft .NET

Similar services are
provided by the .NET
platform.

Of course there’s no
one-to-one strict 
correspondence…

J2EEMS.NET

JTA/JTSDTC

JDBCADO
JNDIADSI
JMSMSMQ

JSP/JSFASP

……

EJBMTS/COM+ 
RMIDCOM

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Presentation Overview

● What is “Enterprise Computing”
● Common Problems
● Real World Solutions
● Common Patterns

– Naming Services
– Pooling
– Transaction Management

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Naming Services

● Map human-friendly names to objects
– DNS
– File System
– LDAP

Adding this indirection layer we gain flexibility 
and portability.



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Development and Deployment

● Different Databases
● Different Hardware
● Different Operative Systems

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Deployment dilemma

Deploy

•There is a direct dependency between the application and the DB
•We must produce different “executables” for Test and Production environments
•Any change in the DB configuration will break our application

Test DB

Test Application

jdbc:x:x:scott/tiger@testdd

Prod DB

Prod Application

jdbc:x:x:peace/love@testdd

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Enterprise Deployment

Test DB

Application

Naming Service
Test

jdbc:x:x:scott/tiger@testdb

myDataSource

•No dependency between Application and DataBase
•No need for different Application versions
•Easier to maintain
•Separation of roles: Developer vs Application Server Administrator

Deploy

Prod DB

Application

Naming Service
Prod

jdbc:x:x:peace/love@testdb

myDataSource

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Java Naming: JNDI 
Java Naming and Directory Interface

Class.forName("oracle.jdbc.driver.OracleDriver");
Connection conn = 
DriverManager.getConnection("jdbc:x:x:scott/tiger@testdd");
/* use the connection */
conn.close();

Context ctx = new InitialContext();
Object dsRef=ctx.lookup("java:comp/env/jdbc/mydatasource");
DataSource ds=(Datasource) dsRef;
Connection conn=ds.getConnection();
/* use the connection */
conn.close();

Direct Connection

JNDI Connection



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

JNDI Configuration
using JBoss

<datasources> 
<local-tx-datasource> 

<jndi-name>comp/env/jdbc/mydatasource</jndi-name> 
<connection-url>jdbc:x:x:@testdd</connection-url> 
<driver-class>oracle.jdbc.driver.OracleDriver</driver-class> 
<user-name>scott</user-name> 
<password>tiger</password> 

</local-tx-datasource> 
</datasources>

•Application Server administrator manages this
•Application Server specific

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Presentation Overview

● What is “Enterprise Computing”
● Common Problems
● Real World Solutions
● Common Patterns

– Naming Services
– Pooling
– Transaction Management

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Pooling

● Pooling means creating a pool of reusable resources
● Greatly improves performance if creating the 

resource is expensive (compared to using it)
● Should be completely transparent to the client

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Pooling Schema

Client

Resource Provider

Resource 
Creator

Client

Resource Provider

Pool Manager

Resource 
Creator

Without Pooling With Pooling



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Java Pooling (JDBC)
Java DataBase Connectivity

Client

Application Server

JDBC Driver

DataSource API Connection DataSource.getConnection()

PooledConnection
Cache

ConnectionPoolDataSource API PooledConnection
ConnectionPoolDataSource.getConnection()

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Pooling Sequence

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Java Code Example

Context ctx = new InitialContext();
Object dsRef=ctx.lookup("java:comp/env/jdbc/mydatasource");
DataSource ds=(Datasource) dsRef;
Connection conn=ds.getConnection();
/* use the connection */
conn.close();

JNDI Connection + Pooling

•Same code as before!
•Complexity completely hidden to developer
•No need to change java sources when pooling parameters change

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Pooling Configuration
with JBoss

<datasources> 
<local-tx-datasource> 

<jndi-name>comp/env/jdbc/mydatasource</jndi-name> 
<connection-url>jdbc:x:x:@testdd</connection-url> 
<driver-class>oracle.jdbc.driver.OracleDriver</driver-class> 
<user-name>scott</user-name> 
<password>tiger</password>

<!-- Pooling parameters -->
<min-pool-size>5</min-pool-size>
<max-pool-size>100</max-pool-size> 
<blocking-timeout-millis>5000</blocking-timeout-millis>
<idle-timeout-minutes>15</idle-timeout-minutes> 

</local-tx-datasource> 
</datasources>



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Presentation Overview

● What is “Enterprise Computing”
● Common Problems
● Real World Solutions
● Common Patterns

– Naming Services
– Pooling
– Transaction Management

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Transaction Management

What is a transaction?

An atomic unit of work. The work in a transaction must 
be completed as a whole; if any part of the transaction 
fails, the entire transaction fails.

Very well know problem that has been “solved” in 
databases for a long time.

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

ACID properties

Atomic: the transaction must behave as a single unit of 
operation. No partial work to commit

Consistent: either creates a new valid state or rolls back to 
the previous one

Isolated: a transaction in process and not yet committed must 
not interfere from all other concurrent transactions

Durable: committed data is saved in a way that the state can 
be restored even in case of system failure

SO/IEC 10026-1:1992 Section 4 

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

ATM Transaction example

Client ATM

DataBase

Account
Manager

Bank
Get money Ask permission

Decrease
amount

Authorize
retrieval

Give moneyX

We need to be able to manage distributed transaction to solve
this class of problems.



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

2-phase commit

● Transaction Manager [TM]

● Resource Manager [RM]

TM RM

prepare

ready

commit

done

Success

TM RM

prepare

no

abort

done

Failure

A log is kept for all operations, to let the TM recover a valid state 
in case of system failure

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Distributed 2-phase commit

TM RM

RM
RM

RM

RM

The TM repeats the 2-phase commit with every RM

● If the all RM answer “ready” the TM issues a global “commit”

● If at least one RM answers “no” the TM issues a global “abort”

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Java Transactions (JTA)
Java Transaction API

Manage transactions in a programmatic way: you are responsible for 
programming transaction logic into your application code, that is calling 
begin(), commit(), abort().

Context ic = new InitialContext(); 
UserTransaction ut = (UserTransaction) ic.lookup(strTransJndi);
ut.begin(); 
// access resources transactionally here 
ut.commit();

Transactional
Application

Transaction
Manager

Resource
Manager

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

J2EE Declarative Transactions

It’s possible to specify at deploy time the transaction behavior. 

The Application Server will intercept calls to the components and 
automatically begin/end the transaction on your behalf

<ejb-jar>
<enterprise-beans>

<session>
<ejb-name>SomeName</ejb-name>
…
<transaction-type>Container</transaction type>

</session>
</enterprise-beans>

</ejb-jar>



Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Transaction types

<container-transaction>
<method>

<ejb-name>myComponent</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>

The J2EE application server manages different managed transaction types:

•Required: always run in a transaction. Join the existing one or starts a new one
•RequiresNew: always starts a new transaction
•Supports: joins the client transaction if any. Otherwise runs in no transaction
•Mandatory: transaction must already be running. Otherwise throws exception
•NotSupported: doesn’t use transactions. Suspends client transaction if it exists
•Never: cannot be involved in a transaction. Throw exception if client has one

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Conclusions

● You can solve any programming problem with 
an extra level of indirection

● except the problem of too many levels of 
indirection

● There are frameworks that already solve the 
most common and complex problems

● Understand the solution. Use the framework.
● Don’t reinvent the wheel

Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Questions?
Advanced Software Development Engineering

Giovanni Chierico: Introduction to Enterprise Computing, 24th Feb 2005

Resources

● J2EE tutorial (http://java.sun.com/j2ee/1.4/docs/tutorial/doc/)

● JBoss Docs (http://docs.jboss.org/jbossas/jboss4guide/r2/html/)

● Designing J2EE Apps 
(http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/DEA2eTOC.html)


