
Advanced Software Development Engineering

1

 

Code Reviews - 
Best Practices

Gerhard Brandt
(University of Heidelberg)

Version of  2/16/05



Advanced Software Development Engineering

2

Contents

● Code Review in a Top-Down Approach
● Documentation from Code
● Code Evolution: Best Practices 

CodeReview CodeEvolution

Learn

Implement

●Brilliant theories – just many small tips
●Professional engineering – just practical experience in poorly 
 equipped HEP environments
●Dilbert Cartoons

Not Contents of this lecture:



Advanced Software Development Engineering

3

Why Code Reviewing ?

● Other people have engineered code for you
– Maintenance

● It's your honour to adjust this code where it shows suboptimal 
behaviour ( = fix bugs )

– Evolution
● You need to add a feature. But where and how?

– Learning
● They were not completely stupid: You can learn from their 

ingenuity



Advanced Software Development Engineering

4

Approaching an unknown body 
of code 

● “Eagle method”: Stay on top - dive in only as required! 
– Don't try to read 100k lines of code from the beginning to the 

end 
● Read in increasing level of detail 

1)Directory Level
2)Structure Level 
3)Codeline level



Advanced Software Development Engineering

5

Approaching an unknown body 
of code: Tools and Example

● Tools used in this lecture:
– Free and Simple
– Easily available (come with Linux'es / Downloadable)
– No IDEs (not available everywhere)
– Mostly Cmdline and WWW based

● Example used: The ROOT Source Code
– Used by many HEP physicists in practice
– Never hurts to know something about it
– (More suggestions for practice:
      Geant4, Mozilla, Linux Kernel, offline sw of your                      

  experiment, ...)
● Starting point:

root_v4.00.08.source.tar.gz



Advanced Software Development Engineering

6

Reading Code: Things to notice 
at Directory Level

● The Shell: First tool, even before the editor
● Size & Complexity ?

– No. of Packages, Files, Classes, Lines of Code
● Documentation ?

– Standard Set of README Files?
● Build Process ?

– Configuration? Compilation? Linkage?
● Unit Tests ?

– What is code, what are tests?

At Directory Level: Project Organization



Advanced Software Development Engineering

7

Reading Code: Size and 
Complexity with ls and wc

● Most powerful tool: ls
– Show organization 
– See filename conventions

● Pipe output into wc for size estimates
● Example: Size of ROOT:

– ls | wc   ~ 90 top level directories (Packages)
– ls -R1 * | wc         ~ 6285 files

      ~ 772 *.cxx files (Classes)
– cat */src/*.cxx | wc ~ 660k lines of code: a lot if read             

                                      sequentially ...
 

Example

/root/html/Module.mk
/root/html/inc/THtml.h
/root/html/src/THtml.cxx



Advanced Software Development Engineering

8

Reading Code
Know your Editor

● We now start up or favorite editor
– Lucky people have IDEs
– The others have at least vi, Emacs, nedit, kate, ...

● Learn to profit from their features. They know:
– Searching / Regular Expressions
– Syntax Highlighting
– ctags / idutils Index files
– Block (un)indentation
– Column selection
– Block collapsing
– File Browser / Tabbed Windows
– ...



Advanced Software Development Engineering

9

Reading Code:
Survey using Birdseye Views

● Have a look at code from above using a tiny text size / 
multiple pages (Print Preview)

● Use a signature survey script 
– (http://c2.com/doc/SignatureSurvey/)
– Strip code, show only brackets / delimiters

● Use syntax highlighting to lowlight comments, 
emphasize structure

/java/awt/print

409 Book ;;{}{}{;{;}{;}{}{;}{}{;}{{"";}{"";};}{;}{;;;;;;{;}}{;}{;;{{;};;}{;}{;}}}

410 PageFormat {;{;;}{;;};}{;;{;}{;};}{;;{;}{;};}{;{;;;;;;"";};}{;{;;;;;;"";};}{;

{;}{;};}{;{;}{;};}{}{}{;}{;}{{;}{;}}{;}{;;;;;;}{}{;{;;;;;;;;;;;;;;;;;;;;;;};}}

411 Pageable ;{}{}{{};;;;}

412 Paper ;;{;;;;;;{;;;}{;{;}{;;};}{;}{;;}{;};{;}{;}{;}{;}{;}}

413 Printable ;;{}{}{{};;{};{}{};}

414 PrinterAbortException ;{}{{;}{;}}

415 PrinterException ;{{}{;}}

416 PrinterGraphics ;{}{}{}{;}

Example
Signature of java/awt/print



Advanced Software Development Engineering

10

Reading Code:
Things to at structural level

● What Design Patterns are used? How do they look 
like?

● What Data Structures are used? What is their 
interface?

● What are the Framework Facilites ?
– Error Handling / Logging / Steering / Cmdline Parsing
– Maths
– GUI / Graphics
– I/O
– Wrappers / Interfaces to legacy code (FORTRAN  )

● If you happen upon these during browsing: Remember 
them !
– Either ... you must use them anyway
– ... if not, you avoid reinventing the wheel



Advanced Software Development Engineering

11

Reading Code:
Things to notice at Line Level

● Coding Conventions used
– Naming Conventions
– Formatting Rules: Layout, Indentation ?
– Commenting Rules / Comment Enrichment
– Control Structures

● What Subset of C++ is used/allowed? STL? Templates?
● C++ Coding Standards in HEP are quite similar to each 

other
– Taligent based: ROOT, ATLAS, ...

● Remember: 
– Advantage of Coding Standards comes mostly from 

Consistent Use
– Even if they are suboptimal/outdated, continuing them makes 

sense within the same project



Advanced Software Development Engineering

12

Reading Code:
Things to skip at line level

● For quick reading, it's crucial to bypass skin and bones 
and get to the meat right away.

● Skip
– Preprocessor Statements
– Initialization

● Instead: Look for 
– Text (like window titles) or print-out you have seen
– Comments marking important sections, like //FIXME
– Tutorial Markers
– Inner Loops



Advanced Software Development Engineering

13

● Scientific Studies exist on what is best (see Refs)
– But most important is to be consistent
– Advantages only gained when being consequent

● Also it is known what is not
– Spaghetti Code 
– Inverse Polish Christmas Tree Notation (Align operators in 

center)
– Dangling else

● Code beautifiers exist: indent (C/C++), Jalopy (Java)
● But Caveat:

– Colleagues could get lost if you reformat their code
– Time “lost” formatting code properly is regained only on 

second iteration (reviewing)

Layout and Indentation



Advanced Software Development Engineering

14

Reading Code
Searching and RegExps

● Most powerfull tool: grep
● Searching covers code and comments
● Stay general - Use word stem
● Chain grep to narrow your search



Advanced Software Development Engineering

15

Documentation from Code 
Introduction

● Tools exist to convert code into readable, navigable 
formats (HTML, LaTeX, PDF ...)

● Source: Code itself + enriched comments
● Progenitor: javadoc (by Sun for Java)
● Many different tools exist 

– ~40 listed on Doxygen page
– http://www.stack.nl/~dimitri/doxygen/ 

● Mostly incompatible formats - chose wisely before 
coding

● Examples:
Javadoc, Doxgen, Thtml, LXR, custom



Advanced Software Development Engineering

16

Documentation from Code 
Javadoc

● Example: Convert java code to HTML
/**

 * Get a dummy object

 * @param  name An unused string 

 * @return      Nothing (Null)

 * @see         Dummy

 */

 public Dummy getDummy(

    String name) {

    return null;

 }

getDummy

public Dummy getDummy(String name)

Get a dummy object

Parameters:
name - An unused string

Returns:
Nothing (Null)

See also:
Dummy

javadoc



Advanced Software Development Engineering

17

Documentation from Code  
Doxygen

● “King” of doc tools (popular)
● Output to LaTeX, RTF, PS, PDF, HTML, man
● Good results for any (unenriched) source
● Create indices, graphs, diagrams ...
● Too many bells & whistles? 

– Some people prefer less features

Example
Mozilla Code Documentation



Advanced Software Development Engineering

18

Documentation from Code  
THtml

● Doctool for the ROOT world
● Classes must be linked to ROOT executable

– ClassImp, ClassDef Macros required
– Non-C++-Files not documented

● Inofficial outlook: THtml2
– ROOT team choice: rewrite doc tool from scratch, incl. C++ 

parser etc.
– more output formats, code browsing, ...   

Example
Class TObject in 
HTML Format



Advanced Software Development Engineering

19

Documentation from Code 
LXR

● Perl to HTML – Source Code Cross Referencing Script
● Serves pages through webserver
● Used by Mozilla, FreeBSD, ROOT, ...
● Freetext search possible
● Updates several 
   times a day
   but: not current state 
   of repository!

Example
Class THtml in LXR



Advanced Software Development Engineering

20

Documentation from Code  
GraphViz

● Free Graph generation package from BellLabs
● Simple Syntax  - can be generated automatically
● Graphical representation of code structure
● Used by Doxygen for its graphs

Example

H1 Analysis Software
Package Dependencies Graph
(Perl to GraphViz Script)



Advanced Software Development Engineering

21

Docu from Code:
Do it yourself !

● Your doctool is missing a feature? Write your own tool!
● Code is written to be parsed – do so
● Possible in *ix world since 30 years

– Classic tools: grep, sed, ...
● And of course there are                                           

Perl, Python, Ruby ...

Example

Package Index HTML page:
Hyperized Directory Listing 
(Perl Script)



Advanced Software Development Engineering

22

Code Evolution 

● When adding new code it is time to apply the best 
practices learned in code reading

● If possible use tools to check contributions
● Compiler 

– Is a professional code reader
– Tell him to be verbose, eg. on gcc use -Wall

● Regression Testing
– Remember junit, cppunit
– Often simpler testing possible
– For HEP software exploit that the output must make sense in 

terms of physics
● cvs diff



Advanced Software Development Engineering

23

Evolution of Code
CVS Browsers

● Most useful tools for manual checks of changes to 
code

● View the CVS Repository in the web browser
● Popular: CVSweb, ViewCVS



Advanced Software Development Engineering

24

Summary

● Reading Code 
– Is a "soft skill" to be learned by experience
– Can be automized using tools: General ones (ls, wc), 

Dedicated ones (doctools) and your own
– Goes hand in hand with writing new code

● Documentation from Code
– Is easy to extract using doctools

● Evolution of Code
– Can be monitored by tools



Advanced Software Development Engineering

25

Bibliography

● Spinellis D., Code Reading, Addison Wesley 2003
● McConnell S., Code Complete, Microsoft Press, 2nd ed. 

2004
● Coplien J., Advanced C++: Programming Styles and 

Idioms, Addison Wesley, 1992
● Peter Thömmes, Notizen zu C++, Springer 2003
● Gamma, E. et al., Design Patterns, Elements of 

Reusable Software, Addison Wesley 1995
● ...


