
Advanced Software Development & Engineering

1 / 44

Iterative Development

Brice Copy
Sebastian Lopienski

CERN

Advanced Software Development & Engineering

2 / 44

What Is Iterative Development ?

● Perform full, fast and complete development
cycles (spec, code, build, integrate, test and
back again)

● In line with modern risk management
techniques

● Enables you to cope with changing
requirements

● As opposed to monolithic approaches
(cascade model)

Advanced Software Development & Engineering

3 / 44

Lecture overview

● Defining iterative development, its uses, its
benefits

● How to implement it for your projects, with
focus on :
– Configuration Management (or Change

Management) Tools - (S. Lopienski)
– Integrated Builds – (B. Copy)

Advanced Software Development & Engineering

4 / 44

Cascade Model

● Already identified the need for a process
(spec, code, build, integrate, test and back
again)

● Suitable for small projects
Analysis

Design

Implementation

Testing

Deployment

Advanced Software Development & Engineering

5 / 44

Why Iterative Development Was
Introduced

● Cascade development too cumbersome
● It addresses greater risks first
● It is “fail fast” - too many IT projects fail at the

very end (when all the money is spent)
● Full development cycles let your team

members (Dev, QA, System) work in parallel

Advanced Software Development & Engineering

6 / 44

Where Is It Used

● Microsoft
– Windows NT was the first large software product

built and integrated on a daily basis
– Yielded a stable product (NT 4) and largest

hardware support (16.5 millions LoC)
● Oracle

– Agile style of development is used for making
developer tools (such as JDeveloper)

– Daily builds with full QA cycles
– Other metrics to monitor health of the project

(outstanding bug count, failed tests...)

Advanced Software Development & Engineering

7 / 44

Where Is It Used (continued)

● Open source projects
– More and more large projects rely on continuous

builds (Spring framework, Apache, JBoss)
– Teams are geographically spread, SCM server is

their main collaboration tool
● CERN

– In order to cope with change
– Resources are limited for “background” tasks

● QA
● Documentation
● Release scheduling and planning

Advanced Software Development & Engineering

8 / 44

The three phases

Requirements

Development

Testing

Advanced Software Development & Engineering

9 / 44

Progression

● Initial cycle are longer (a couple of weeks)
● No prototype is usually delivered before the

second iteration
● Cycles get shorter and shorter as the project

progresses
● When necessary features are provided – focus

on quality

Advanced Software Development & Engineering

10 / 44

Progression (2)

● Product Management gets more and more quiet
● Development pressure increases
● Quality takes more and more importance
● Eventually, Quality dictates Development, which

must deliver punctual improvements and in the end
just bug fixes

Advanced Software Development & Engineering

11 / 44

“Et pour la pratique”

Gotta love the theory...
but who will apply it and how ?

Focus on :
● Change Control
● Iterative Builds

Advanced Software Development & Engineering

12 / 44

Best practices policy

● To work as a team, you need to define your
best practices (in order of importance) :
– SCM practices (branching, tagging, commits)
– Testing practices
– Dependency management (ensure convergence)
– Coding standards and review processes etc...

● Communicate and agree on those, best
practices are not a one man's job

● Tip : If you do not have policies, steal them
from someone (they won't mind)

Advanced Software Development & Engineering

13 / 44

Configuration Management
a.k.a. Change Management
a.k.a. “The fall guy”

● Monitoring change in iterative development is
paramount

● Being able to produce a deliverable from “the
good old days when everything worked fine”

● Focus on CVS : Popular Software
Configuration Management (SCM) tool

Advanced Software Development & Engineering

14 / 44

Advanced CVS features

● Starting point : CSC 2004 - CVS usage lecture
● Here are some advanced features helpful for

teamwork :
– Tagging
– Branching
– Merging
– Watching

Advanced Software Development & Engineering

15 / 44

Tagging

● Giving a common name to chosen revisions of
chosen files

● Useful to mark a release made at a given
moment (“current revisions of all files”), to
mark a project as it is at the given time

● You can later refer to that tag (name) while
checking out, branching and merging etc.

cvs tag Tag_Name
tags current revisions of files

Advanced Software Development & Engineering

16 / 44

Branching

● Branch : separate thread of revisions, that can be
edited without affecting other branches

● Useful for maintaining latest stable release without
touching current development (unstable) version

● If several developers have to modify one file, each
should work on his branch
cvs tag -b Branch_Name

(creates a new branch)
cvs update –r Branch_Name

(updates local working copy)
● Sample branch number 1.5.2.1

= first revision 2.1 of a branch made from revision 1.5

Advanced Software Development & Engineering

17 / 44

Branching : revision tree

Advanced Software Development & Engineering

18 / 44

Branching cost

● Branching is a powerful feature
● Like all powerful features it comes at a cost :

– Branching means maintaining multiple versions of
your product

– You may have to fix bugs only in a given branch
– You may have to fix bugs in all branches (can be

difficult or impossible in some cases)
– A branch should be as short lived as possible

Advanced Software Development & Engineering

19 / 44

Merging

● It is closing a branch by putting its
modifications into the mainstream “trunk”

● Or merging modified local copy of a file with
modified revision in CVS

● CVS tries to merge modifications automatically
● if it fails because of a conflict (same line was

modified in a branch and in a “trunk”), then
developer has to merge it manually
cvs update –j Branch_Name

“joins” changes of the other branch

Advanced Software Development & Engineering

20 / 44

Watching

● When a developer sets a watch on a file, he
asks CVS to notify him if anyone else starts to
work on that file
cvs watch add File_Name

asking CVS to watch this file for me
cvs edit File_Name

informing CVS that I start working on this file
cvs unedit File_Name

I’m not working on this file anymore
cvs watchers File_Name

who is watching this file?

Advanced Software Development & Engineering

21 / 44

CVS Tools

● Beyond the command line
– GUI CVS clients
– Web CVS client

● Let you :
– Visualise and edit differences between versions
– Request revision trees
– Perform advanced operations easily (Special

updates by date, tag, branch)

Advanced Software Development & Engineering

22 / 44

CVS Tools samples

Advanced Software Development & Engineering

23 / 44

Once upon a time...
or “The three developers and the big bad build”

● A team of developers sitting on a java web
application :
– A big common library (for foundation classes)
– A big application made of :

● A set of disconnected CVS modules and deployed
separately (for reusability)

● Web UI made of JSP pages
● Many third party dependencies = Feature rich

– Manual testing procedure
– Manual configuration and deployment

Advanced Software Development & Engineering

24 / 44

Third party libraries

Once upon a time...
Dependencies

Common library

DB ORM PDF Excel Charts Etc..

Web Etc...

Web App 1 Web App 2 Web App 3

Advanced Software Development & Engineering

25 / 44

Once upon a time...
Build troubles

● Building from scratch was difficult
– Dependencies version number was not known

(difficult upgrades), lived in one place only
– Near the end : the common library needed to be

compiled by bootstrapping (A→B→A)
● Configuring for deployment required a global

understanding of the product (config files in
multiple places)

● Deploying needed a manual procedure
● The end result was tested visually

Advanced Software Development & Engineering

26 / 44

Once upon a time...
The integrated build

● Integrated build helped to :
– Break up the common library in small components

with few dependencies
– Ensure the end-product could be built from scratch

by anybody
– Make it easy to write tests and run them

continuously
– Collect metrics on development activity

● Integrated build did not :
– Write tests automatically
– Fully automate the deployment

Advanced Software Development & Engineering

27 / 44

Why so extensive ?
“Your build”

● Your build must be :
– Reproducible
– Easy to trigger (one command line)
– Automatable

● Your build must cover all aspects of your
development procedure

● Your build must run as early and as often as
possible (you only care when it's broken)

Advanced Software Development & Engineering

28 / 44

Integrated Build Tool (1)
What does it do ?

● Code Generation
– Metadata, Remote stubs, ORM mapping files

● SCM integration
– CVS, Subversion, SourceSafe etc...

● Code compilation (from various sources to
various targets)
– Functional and regression testing
– Packaging (ZIP/RPM, JAR/WAR/EAR files)

● ...

Advanced Software Development & Engineering

29 / 44

Integrated Build Tool (2)
What does it do ?

● Testing
– Functional, Regression, Integration...

● Packaging and deployment
– ZIP, RPM, JAR/WAR/EAR etc...

● Documentation generation
– Javadoc, XDOC, UML, etc...

● Reporting
– CVS activity statistics, unit testing coverage, code

quality metrics
● And more...

Advanced Software Development & Engineering

30 / 44

Which build tools ?

● Apache Ant
– All purpose tool, low level

● Apache Maven
– High level, somewhat Java centric

● Cruise Control
– For build automation

● But there are many more out there...

Advanced Software Development & Engineering

31 / 44

Apache Ant

● Aimed at replacing MAKE
● Low level tasks (move, zip, javac etc..)
● Project organisation is up to you
● Making new tasks is easy...
● ...Sharing them is not easy
● Will not manage your project (needs strong

processes or a generation tool)
● Good foundation for platform independent

build processes and scripting

Advanced Software Development & Engineering

32 / 44

Ant build sample

<project name="jpetstore" default="dist" basedir=".">
<target name="init">
<path id="project.classpath">

<fileset dir="${global.build.dir}/comp">
<include name="log4j/lib/log4j.jar"/>
<include name="junit/lib/junit.jar"/>

</fileset>
</path>
<available file="${dir.src}/java"

property="sources.exist"/>
</target>

<target name="compile" depends="init" if="sources.exist">
<mkdir dir="${dir.build}/classes"/>
<javac debug="${debug}" destdir="${dir.build}/classes"

srcdir="${dir.src}/model">
<classpath refid="project.classpath"/>

</javac>
</target>

</project>

Advanced Software Development & Engineering

33 / 44

Apache Maven

● A layer on top of Ant
● Includes a project model (=metadata)
● Requires a reorganisation of your

dependencies
● Uses Ant tasks, scripting and plug ins
● Covers all steps of your build (from code

generation to deployment)
● Really aimed at Java (but offers .Net plug ins

for compilation and code generation etc...)

Advanced Software Development & Engineering

34 / 44

Maven Project Model (POM)

● Requires you to describe :
– Your source files and resources
– Your dependencies (JAR, WAR, ZIP etc...)
– Your SCM connection (CVS, Starteam,

Subversion...)
● Gives the exact recipe for a reproducible build
● Lets you define custom build steps that

decorate existing steps
(e.g. “Before compilation -> trigger this generation
utility”)

Advanced Software Development & Engineering

35 / 44

Maven features

● In return, your project can now be :
● Generated
● Compiled
● Tested
● Packaged
● Deployed

● ... all this with a single command line
● Maven will also generate reports (CVS stats,

code quality, javadoc, xdoc, testing coverage)

Advanced Software Development & Engineering

36 / 44

Local File System

SCM

Maven project layout

project

src

test

Local
repository

Global
Repository
(append-only)

Advanced Software Development & Engineering

37 / 44

Maven project file sample
<project>
<name>Pet Clinic</name>
<groupId>cern.ppt</groupId>
<id>petclinic</id>
<currentVersion>0.1</currentVersion>

<package>org.springframework.samples.petclinic</package>

<dependencies>
<dependency>
<groupId>hibernate</groupId>
<artifactId>hibernate</artifactId>
<version>2.1.7</version>
<properties>
<war.bundle>true</war.bundle>

</properties>
</dependency>

<build>
<sourceDirectory>src</sourceDirectory>
<unitTestSourceDirectory>test</unitTestSourceDirectory>

</build>
</project>

Advanced Software Development & Engineering

38 / 44

Maven output samples

Advanced Software Development & Engineering

39 / 44

Continuous builds

● Continuous builds are like watchdogs
● Take the pain out of building code
● Send daily status messages
● Keep log archives, to help you monitor your

progress
● Inform whoever last contributed that there's a

problem

Advanced Software Development & Engineering

40 / 44

Cruise Control

● Continuous build tool
● Very simple to install and run
● Works with many building tools (Ant, Maven,

NAnt)
● Publishes results via :

– Email
– Scp
– Instant Messaging
– X10 (Heating control, lava lamp, alarm etc...)

Advanced Software Development & Engineering

41 / 44

Cruise Control report sample

Advanced Software Development & Engineering

42 / 44

Iterative = Integrated

● For iterative development you need
– The right tools
– The right practices
– The right project model

● Do not focus on a tool, but on what you really
need

● Iterative Development is contagious – once
you start somewhere, the rest of your projects
have to follow

Advanced Software Development & Engineering

43 / 44

And to follow up...

● Q&A
● Semi-interactive demo on build integration
● Panel discussion

Advanced Software Development & Engineering

44 / 44

Bibliography
Recommended links

● Pragmatic Project Automation
by M. Clark (Pragmatic Bookshelf, July 2004)

● The resource on agile / iterative development
http://www.agilealliance.org/articles/index

● Testing practices blog
http://www.developertesting.com/

● Maven User Reference
http://maven.apache.org/reference/user-guide.html

