
Standards driven AAA for
Job Management within the 

OMII-UK distribution
Steven Newhouse
Director, OMII-UK

s.newhouse@omii.ac.uk



©

OMII-UK
A partnership between projects:

myGrid at Manchester (Carole Goble - Chair)
OGSA-DAI at Edinburgh (Malcolm Atkinson)
OMII at Southampton (Dave De Roure)

Started January 2006
Manchester – Expanded Engineering activity
Southampton – Expanded Community activity
Edinburgh – Continuation of OGSA-DAI team

All funded for 3 yearsAll funded for 3 years



©

Objectives of OMII-UK
To distribute a sustained, well-engineered, 
interoperable, documented and supported set 
of easily-used integrated composable
services, components and tools 
To engage proactively with user communities 
in defining and developing this software
To maintain a leading international role in 
advanced e-Infrastructure provision



©

Current Container Security
Only consider a Web Service
Primarily Authentication through WS-Security

Digital Signature on a signed message
Signature MUST be signed by a certificate 
from a known CA
Authentication data available to the service
Outgoing message signed



©

OMII-UK Job Authorisation
OMII 1.x: Application execution from GRIA

Defined model enforced by PBAC
PBAC: Process Based Application Control
User registration & account (quota) creation
Resource allocation for compute and data
Data in Application execution Data out.
Application needs to be installed on the machine



©

PBAC:
Process Based Access Control

Specify server side workflow
Need to have performed Action Z on Service A 
before Action Y on Service B
Check authorisation policy rather than interaction 
state

State interaction captured within a ‘conversation’
Authorisation action is related to a particular 
conversation

Client interaction is planned & context 
dependent



©

OMII-UK Job Authorisation
OMII 2.x: GridSAM

SAM: Job Submission and Job Monitoring
Uses JSDL to define the ‘job’
Various back end environments ‘DRMConnector’
Service specific Authorisation

gridmap like
Connector specific Authorisation
WS Management Interface:

submit, status, terminate, …



©

Need to do better…
An Authorisation policy that can be applied across 
consistently across all services

Within a hosting environment 
A network of hosting environments (e.g. VO)

A solution that can be reused:
Portlets
Service specific policies:

Data tables within a database
Queues or processor/memory limits within a job

Standards driven



©

Current Prototype

PERMIS: Generate Attribute Certs & Policy
Authz Service: SAML 1.1 Assertion port type

WS
Request/
Response

WS Container

A
X

IS
 H

andlers

TestService

OMIIAuthz

O
penS

A
M

L

LDAP
PERMIS

PERMIS
Management

GUIs

PEP

PEP PEP = Policy Enforcement Point



©

Authorising Service Access
Handler in the request chain
Authorisation decision based on:

Requesting entity (user)
Target (service)
Action (operation)

Great for job creation… but it is static
Same policy for job creation as termination, etc.



©

Dynamic Service Authorisation
On job creation create a job specific policy

Steven’s job – he can manipulate & delete it
But, the administrator can also delete it.

But Steven may also want to allow Erwin to 
be able to manipulate the job

Provide an interface to manipulate policies
Reuse the same Authorisation Service

Requesting entity (user)
Target (service)
Action (operation)



©

Other gaps…
The third ‘A’ – Accounting

Looking at RUS & UR options
Account (quota) solution from GRIA
Applying for an account (e.g. GAMA, PURSe)

The silent ‘A’ – Audit
Attribute Management

VOMS
Standards?



©

Summary 
Mange authorisation policies across services
Accounting (use against quota) is important
Pick up on existing standards & tools

Authorisation infrastructure
User registration & account generation

Currently a non-GSI world
But out-of bound use through MyProxy

Emerging need for dynamic policies


