Lecture 4: AC Losses in Magnets - and Training

Plan

- summation of ac loss in superconductor
- ac loss and refrigeration load
- temperature rise and temperature margin
- cooling conduction and heat transfer
- measurement of ac loss
- training what is it
- energy releases in the magnet winding
- conductor design for stability

'Pulsed Superconducting Magnets' CERN Academic Training May 2006

Summary of losses

1) Persistent currents in filaments

$$P_f = \lambda_c \lambda_w \lambda_f M_f \dot{B} = \lambda_c \lambda_w \lambda_f \frac{2}{3\pi} J_c(B) d$$

loss per per ramp J.m-3

$$E_f = \lambda_c \lambda_w \lambda_f \frac{2}{3\pi} d_f J_o B_o \ln\left\{\frac{B_2 + B_o}{B_I + B_o}\right\}$$

2) Coupling currents between filaments in the wire

power
W.m⁻³
$$P_{c} = \lambda_{c} \lambda_{w} \lambda_{fb} M_{c} \dot{B} = \frac{2}{\mu_{o}} \lambda_{c} \lambda_{w} \lambda_{fb} \dot{B}^{2} \tau(B) \qquad \tau = \frac{\mu_{o}}{2\rho_{t}(B)} \left(\frac{p_{w}}{2\pi}\right)^{2}$$

transverse field crossover resistance power W.m⁻³

$$P_{tc} = \lambda_c \frac{1}{120} \frac{\dot{B}_t^2}{R_c} p \frac{c}{b} N(N-1)$$

transverse field adjacent resistance power W.m⁻³

 $P_{ta} = \lambda_c \, \frac{1}{6} \frac{\dot{B}_t^2}{R_a} \, p \frac{c}{b}$

 $_{f}\dot{B}$

parallel field adjacent resistance power W.m⁻³

$$P_{pa} = \lambda_c \frac{1}{8} \frac{\dot{B}_p^2}{R_a} p \frac{b}{c}$$

Martin Wilson Lecture 4 slide2

Other losses: eddy currents

total power/volume of strip

$$P_{v} = \frac{1}{c h l} \int_{0}^{c} p_{v}(x) h l \, dx = \frac{\dot{B}^{2}}{c \rho} \int_{0}^{c} x^{2} dx \qquad P_{v} = \frac{\dot{B}^{2}}{\rho} \frac{c^{2}}{3}$$

recap coupling between twisted filaments

$$P_{c} = \frac{2}{\mu_{o}} \lambda_{c} \lambda_{w} \lambda_{fb} \dot{B}^{2} \tau(B) = \lambda_{c} \lambda_{w} \lambda_{fb} \frac{\dot{B}^{2}}{\rho_{t}(B)} \left(\frac{p_{w}}{2\pi}\right)^{2}$$

so eddy loss is similar to coupling loss when strip width $\sim \frac{1}{2}$ twist pitch

'Pulsed Superconducting Magnets' CERN Academic Training May 2006

Other losses: iron hysteresis

loss per unit volume per cycle $E = \int \mu_o H dM = \int \mu_o M dH$ = area of hysteresis loop

hysteresis data from GSI and high field (up only) data from IHEP - we need more data!

Martin Wilson Lecture 4 slide4

Losses in magnets: 1 refrigeration load

Must integrate the loss expressions over the magnet volume, taking account of the variation in magnitude and direction of B and B`

- a) use a computer code, eg ROXIE, Opera etc
 - you will have to ask someone else
- b) use a spreadsheet
 - my quick and dirty method

Field in a dipole

radial field (parallel to cable) ~ constant across cable azimuthal field (transverse to cable) ~ linear gradient across cable

'Pulsed Superconducting Magnets' CERN Academic Training May 2006

Losses in magnets: 1 refrigeration load

Appendix 14-4(4): Hysteresis and coupling losses in dipole 001				ole 001	4.0T 4T/s		with Kim	with Kim Anderson Jc transport current correction and magnetoresistance in $ ho_{et}$									
no proximity loss								λ Β΄ 2									
filament coupling term includes magnetoresistance				Crosso	crossover transverse power			$P_{tc} = f_{tc} \frac{\sim c}{120} \frac{\sim t}{R_{o}} \cdot p \cdot N \cdot (N-1) \cdot \frac{c}{b}$									
cable half width a c 4.87E-03 m								120 Kc	(2 2	2ъ 🗘 🔀	******					
cable half thickness b	b	5.83E-04	m	adjac	adjacent transverse power			$\left P_{ta} = f_{ta} \frac{\lambda_c}{c} \frac{B'_t}{c} \frac{c}{c} \right _{t=1} \frac{1}{1 + \frac{1}{16}} \frac{G_t c^2}{c} \qquad \qquad$									
cable twist pitch	р	7.40E-02	m					10 10 6 R _a	в 15								
crossover resistance	Rc	6.00E-02	ohm	n				$\lambda_c B'_p^2$	b	not	e ii	na		$l\dot{p}^2 \circ \left(l C^2 \circ^2 \right)$			
adjacent resistance	Ra	7.40E-05	ohm	ac	adjacent parallel power			$P_{pa} = f_{pa} \cdot \frac{c}{8} \cdot \frac{p}{R_{a}} \cdot \frac{p}{c}$				li u	$P_{tr} = \lambda_{t} \frac{I}{D_{t}} \frac{B_{t}}{p} \frac{C}{l} \left\{ 1 + \frac{I}{D_{t}} \frac{G}{C} \right\}$				
number of strands	Ν	3.00E+01						(B_{B}, B_{R}) gradient field G				nt fi	$\begin{bmatrix} ta & tc & 6 & R_a & b & 15 & R_c^2 \end{bmatrix}$				
permeability fs	μο	1.26E-06	henry/m	filament	filament coupling power			$P_{fm} = \lambda_c \cdot \lambda_w \cdot \frac{D_{max}}{d}$	$\frac{1}{2}$ mi) $\frac{1}{2}$	0				<i>u</i> (<i>-l</i>)			
cable filling factor	λc	0.826						1	r (2.								
wire filling factor	λω	0.872		hysteresis power			$P_{ab} := f_{b} :=$	$\int \frac{\lambda_c \cdot \lambda_w \cdot \lambda_f}{1 + 2} \frac{d}{df} \left[I - B - i \ln \left(\frac{B_e + B_o}{1 + B_o} \right) + A_o \left(B_e - B_i \right) + \frac{A_1}{1 + 2} \left(B_e^2 - B_i^2 \right) \right]$									
matrix ratio	mat	2.250		F				$\frac{1}{1} - \frac{1}{1} - \frac{1}$									
	λi Q	0.308		Г			λ	$\frac{\lambda_{0} \cdot \lambda_{w} \cdot \lambda_{f} \cdot M_{0} \left(-k \cdot B_{1} - k \cdot B_{0}\right)}{J_{0} \cdot B_{0}}$									
wire trans res'y intercept	C _{pet}	1.69E-10	ohm.m	m proximity power			2ph :=	$\sum_{ph} := \frac{1}{1 + \frac{1}{2} + \frac{1}{$					summate the 5 loss				
wire trans res'y gradient	m _{pet}	1.23E-10	ohm.m/T			L								torms around the soil			
wire twist pitch	pw	4.00E-03	m	transpor	t current c	orrection	ΔΡ	$c_{\rm ch} = \frac{1}{0.\pi} \cdot \frac{{}^{\rm d} {}_{\rm f}}{T} \cdot {}^{\rm I} {}_{\rm e}^{2} \cdot {}^{\rm B} {}_{\rm e}$	(3·B e	+ + B so)	27	$J_c(B) = \frac{J_c}{B}$	so ^{• D} so	terms around the com			
filament diameter	d _f	6.00E-06	m					9·π 1 r	$J_{so} \cdot B_{so} \cdot \lambda_c$	$\lambda_{w} \lambda_{f} (4c)$	b) ²	В	+ D _{SO}	section in segments of			
Mod'd Kim Anderson	J_{o}	3.85E+10	A/m^2	calc hys	t & prox'y l	oss at 5	0.4	<u>4a</u>						section in segments of			
Mod'd Kim Anderson	Bo	0.1300	Tesla	points in	cable		1 2	345	ramping	mean	loss/	fraction	1	size δφ			
Mod'd Kim Anderson	A ₀	4.35E+09	A/m^2				08	a	power	power	cycle	of total					
Mod'd Kim Anderson	A ₁	-5.9E+08	A/m^2/T	Block lin	nits for inte	gration			Watts	Watts	Joules	%					
Kim Anderson	J_{so}	3.00E+10	A/m^2	block	min ø	max ø		transv'se crosso	ver 0.21		0.4	0.5%					
Kim Anderson	B _{so}	0.45	Tesla	1	0.00	15.67		transv'se adjace	ent 9.25		18.5	23.5%					
max magnet current	lext	6800	Amp	2	17.08	36.24		parallel adjac	ent 0.13		0.3	0.3%					
max aperture field	Bext	4.000	Tesla	3	41.28	55.22		filament coupl	ng 13.52		27.0	34.3%					
computed aperture field	Bcomp	2.1215	Tesla	4	66.21	73.17		hystere	esis 14.73		29.5	37.4%					
min magnet current	linj	1	Amp	length of	magnet =	1.17	metre	delta hysteres	is 1.56		3.1	4.0%		Β _φ			
min aperture field	Binj	0.00	Tesla	turn area per	degree =	7.89E-06	m^2	total hystere	sis 16.29		32.6	41.3%					
ramp ratio Bi / Be	f _r	0.00		су	cle time =		sec	total mag	net 39.41		78.8	100.0%		B.			
ramp time	Tr	1.000	sec	ramping/aver	age factor												
ramp rate	B.	4.00	T/s			~ ~		ו						δΦι			
cook factor trans Rc	ftc	1.00		load line fitting	B(I)	$= C_L I$	$+ D_L I^n$										
cook factor trans Ra	fta	2.00		C _L =	9.02E-04	1								Ŧ			
cook factor par'l Ra	fpa	1.00		D _L =	-5.3	8E-05											
cook factor hysteresis	fh	1.00		n =	1.2000												
sum of loss/m/																	
dc fields as computed at centre of cable actua			actual ramp rates	I ramp rates and field			components of loss per unit volume of winding loss/m ³ segm't										
angle B trans G trans	s B parl	Bmod	B' trans C	G`trans B`parl	B`mod	Bmod	Ptc	Pta Pp	Pf	Ph	ΔPh	Ps	Pd				
0 -0.822 244.3	0.000	0.822	1.550	460.6 0.000	1.550	1.550	148.0	6287.8 0.00	2777.5	4990.0	381.9	14585	0.1151				
1 -0.822 246.6	-0.004	0.822	1.549	465.0 0.008	1.549	1.549	147.9	6299.3 0.00	2776.0	5008.1	384.5	14616	0.1153				
2 -0.822 247.9	-0.047	0.823	1.549	467.4 0.088	1.552	1.551	147.9	6305.2 0.10	2782.7	5035.0	386.7	14658	0.1156				

Martin Wilson Lecture 4 slide7

Critical line and magnet load lines

engineering current density

we expect the magnet to go resistive 'quench' where the peak field load line crosses the critical current line * usually back off from this extreme point and operate at _

Martin Wilson Lecture 4 slide8

- poor joints
- beam heating

Martin Wilson Lecture 4 slide9

temperature K

8

10

1000

800

60Q

400

200

'Pulsed Superconducting Magnets' CERN Academic Training May 2006

16

Temperature margin and ac loss

- for reliable magnet operation, we like to keep a temperature margin as a safety factor against unexpected temperature rises
 - mechanical movement
 - poor joints
 - beam heating
 - cryogenic fluctuations
- ac losses erode the temperature margin and must be factored into the magnet design
 a 'safety factor' against an effect which is certain to happen is not a safety factor at all!
- so to get a true temperature margin, we need to calculate the worst temperature rise caused by ac loss and take that to be the operating temperature
- the **peak field point** is usually most sensitive to temperature; usually this point has the highest ac loss

Martin Wilson Lecture 4 slide10

Factors in the temperature rise

conduction through the cable

conduction through the insulation

- heat transfer to the helium
- usually there is no helium cooling on the broad faces of the cable
- cooling is much more efficient with helium in contact with inner and outer edge of cable

Conduction through the cable

heat generation per unit volume P_v effective transverse thermal conductivity k_{eff} temperature rise

 $\Delta \theta = \frac{P_v}{k_{eff}} \frac{a^2}{2} (2\varepsilon - \varepsilon^2) \qquad \text{where } a$

where a = half (full) width of cable and $\mathcal{E} = x/a$

Note: k varies with temperature, but OK to assume constant for small temperature rises

Conductivity through the cable

- the best way is to measure it!
- if this is not possible (time!) then it can be estimated from a summation of two components in parallel:-

conduction along the wires

neglect NbTi, take filling factor of copper in cable and geometry factor to take account of slant angle of wires; $N_{c} = cable$ width

$$k_{effa} = k_{Cu} \frac{N}{p} \frac{c}{b} \pi d_w^2 \frac{mat}{1 + mat} \frac{1}{\sqrt{p^2 + 16c^2}}$$

2c = cable width2b = cable thicknessp = cable twist pitch

copper thermal conductivity k_{Cu} depends on purity and hardness; measure electrical resistivity and check via the Wiedemann Franz Law

$$k(\theta)\rho(\theta) = L_{o}\theta \qquad \qquad L_{o} = \text{Lorentz number} \\ = 2.45 \times 10^{-8} W\Omega K^{-2}$$

➡ conduction between wires

can estimate from measured electrical R_a and the Wiedemann Franz Law (perhaps!)

$$k_{effb} = L_o \theta \frac{1}{R_a} \frac{2N}{p^2} \sqrt{p^2 + 16c^2}$$

Martin Wilson Lecture 4 slide13

Conduction through insulation

- thermal conductivity of insulating materials is very low at 4K
- it depends on temperature

Some insulators at 4.2K

material	$k Wm^{-1}K^{-1}$
glass	0.1
epoxy resin	0.06
polystyrene	0.03
teflon	0.05
nylon	0.01
alumina loaded epoxy resin	0.1

Thermal conductivity of two types of Kapton Rule DL et al NIST 91

Martin Wilson Lecture 4 slide14

Heat transfer to boiling liquid helium

- heat transfer to boiling liquid helium is hysteretic -
- if you exceed the peak nucleate boiling flux the temperature rises above critical for the superconductor

- so for ac loss must keep below peak nucleate boiling flux
- temperature rise depends on surface finish

Martin Wilson Lecture 4 slide15

Boiling in narrow channels

when the helium is confined to a narrow channel the peak nucleate boiling flux is reduced; Sydoriak presents the following correlation

F

1

$$\phi_{pnbf} = \frac{1.8 \, s}{z^{1/2} (s + 0.11 + 0.037n)}$$

where ϕ_{pnbf} = peak nucleate boiling flux (W/cm² of channel wall) s = separation between channel walls (cm) z = channel height (cm) n = number of walls heated

Martin Wilson Lecture 4 slide16

Cooling by forced flow supercritical helium

heat transfer to forced flow supercritical helium can be approximated by the Dittus Boelter correlation, provided the flow is turbulent, ie $\text{Re} > 10^5$

$$Nu = 0.259 \,\mathrm{Re}^{0.8} \,\mathrm{Pr}^{0.4} \left(\frac{\theta_w}{\theta_b}\right)^{-0.716}$$

the heat transfer coefficient h (Wm⁻²K⁻¹) ľ

$$h = Nu \, \frac{k}{D_h}$$

where Nu = Nusselt number Re = Reynolds number Pr = Prandtl number θ_w = wall temperature θ_b = bath temperature

- where k = gas thermal conductivity D_h = hydraulic diameter of channel
 - for a channel of annular cross section

$$D_h = \frac{4A_h}{2\pi(r_o + r_i)}$$

$\operatorname{Re} = \frac{M}{A_h} \frac{D_h}{\mu}$ $\Pr = \frac{\mu Cp}{k}$

where M = mass flow rate $\mu = \text{viscosity}$ Cp = specific heat at constant pressure

see Arp V Adv. Cryo. Engineering Volume 17 pp342

Martin Wilson Lecture 4 slide17

Pressure drop in forced flow supercritical helium

provided the flow is turbulent, ie $\text{Re} > 10^{5}$, the pressure drop along a channel carrying forced flow supercritical helium is

$$P = \frac{2f}{D_h \rho} \left(\frac{M}{A_h}\right)^2$$

where

$$f =$$
 friction factor
 $D_h =$ hydraulic diameter
of channel
 $M =$ mass flow rate
 $\rho =$ gas density
 $A_h =$ cross sectional
area of channel

measurements of friction factor in the Euratom large Tokamak conductor

'Pulsed Superconducting Magnets' CERN Academic Training May 2006

Heat transfer to superfluid helium

varnish-Cu (Ref 45) 8 it may be represented by 7 Pt(Ref 39) $Q' = \alpha \left(\theta_w^n - \theta_b^n \right)$ 6 High Cu (Ref 42) (¥) 5 where Q = heat flux Ag(Ref 29)†s per unit area Al (Ref 41) 4 Low Cu (Ref 45) Pb-Sn (Ref 45) $\alpha \& n$ are 3 experimentally determined 2 2 3 4 5 0 1 $q(W/cm^2)$

the temperature drop between a heat generating surface and superfluid helium 2 is caused by phonon mismatch, known as Kapitza resistance

Martin Wilson Lecture 4 slide19

Heat transfer to superfluid helium

Kapitza coefficients depend on the surface

$$Q' = \alpha \left(\theta_w^n - \theta_b^n \right)$$

Metal	Surface condition	T_s at 1 W/cm ²	$\alpha (W/cm^2 \cdot K)$	n
Cu	As received	3.1	0.0486	2.8
	Brushed and baked	2.85	to	
	Annealed	2.95	0.02	3.8
	Polished	2.67	0.0455	3.45
	Oxidized in air for			
	1 month	2.68	0.046	3.46
	oxidized in air at			
	200° C for 40 min	2.46	0.052	3.7
	50-50 PbSn solder coated	2.43	0.076	3.4
	Varnish coated	4.0	0.0735	2.05
Pt	Machined	3.9	0.019	3.0
Ag	Polished	2.8	0.06	3.0
Al	Polished	2.66	0.049	3.4

from 'Helium Cryogenics' by SW Van Sciver

Martin Wilson Lecture 4 slide20

Critical superfluid heat flux in channels

- consider a cooling channel connecting the hot surface to the bath
- critical heat flux in this channel is reaches when the temperature at the hot end reaches the lamda point
- the condition for lamda point is

$$q'^{*}L^{(1/m)} = Z(\theta_{b}) = \begin{cases} \theta_{\lambda} \\ \int \\ \theta_{b} \\ f(\theta) \end{cases} \end{cases}$$

• this gives the heat carrying capacity of the channel

Martin Wilson Lecture 4 slide21

Measurement of ac loss

Calorimetric

- the most direct measurement
- measure the volume of helium gas boiled off and multiply by the latent heat

- for good accuracy don't forget to:
 - wait for steady state conditions
 - calibrate with the resistor
 - warm the gas to a defined temperature before measuring its volume
 - measure the gas pressure (latent heat depends on pressure)
 - equalise pressure between the 'bell' and rest of cryostat (gas might bubble out under)

Martin Wilson Lecture 4 slide22

Measurement of ac loss

Electrical

- measure the net work done by the power supply and integrate over a cycle
- subtracting a term MdI /dt can improve accuracy by reducing the ± range of integration - but M <u>must</u> be linear - no iron!

Advantages

- fast response
- no special cryogenics needed OK with refrigerator

Disadvantages

- must go round a full cycle
- problems with thermoelectric emfs
- pickup

'Pulsed Superconducting Magnets' CERN Academic Training May 2006

Training of an early LHC dipole magnet

MBSMS3.V1 and MBSMS3.V4 Training Curve @ 1.8K (including ''de-training'' test)

Martin Wilson Lecture 4 slide24

Causes of training: (1) low specific heat

- the specific heat of all substances falls with temperature
- at 4.2K, it is ~2,000 times less than at room temperature
- a given release of energy within the winding thus produce a temperature rise 2,000 times greater than at room temperature
- the smallest energy release can therefore produce catastrophic

Causes of training: (2) high forces

Conductors in a magnet are pushed by the electromagnetic forces. Sometimes they move suddenly under this force - the magnet 'creaks' as the stress comes on. A large fraction of the work done by the magnetic field in pushing the conductor is released as frictional heating

work done per unit length of conductor if it is pushed a distance δz

 $W = F. \delta z = B.I. \delta z$

frictional heating per unit volume

$$Q = B.J.\delta z$$

typical numbers for NbTi:

$$B = 5T \quad J_{eng} = 5 \times 10^8 \text{ A.m}^{-2}$$

so if $\delta = 10 \,\mu\text{m}$
then Q = 2.5 x 10⁴ J.m⁻³
Starting from 4.2K $\theta_{final} = 7.5\text{K}$

Causes of training: (3) differential thermal contraction

We try to stop wire movement by impregnating the winding with epoxy resin. Unfortunately the resin contracts much more than the metal, so it goes into tension. Furthermore, almost all organic materials become brittle at low temperature. $brittleness + tension \Rightarrow cracking \Rightarrow energy release$

Calculate the stain energy induced in resin by differential thermal contraction

let: σ = tensile stress Y = Young's modulus ε = differential strain v = Poisson's ratio typically: $\varepsilon = (11.5 - 3) \times 10^{-3}$ $Y = 7 \times 10^{9} \text{ Pa}$ $v = \frac{1}{3}$

uniaxial
strain
$$Q_1 = \frac{\sigma^2}{2Y} = \frac{Y\varepsilon^2}{2}$$
 $Q_1 = 2.5 \times 10^5 \text{ J.m}^{-3}$ $\theta_{final} = 16\text{ K}$

triaxial strain

 $Q_3 = \frac{3\sigma^2(1-2\nu)}{2Y} = \frac{3Y\varepsilon^2}{2(1-2\nu)}$ $Q_3 = 2.3 \times 10^6 \text{ J.m}^{-3}$ $\theta_{\text{final}} = 28\text{ K}$

an unknown, but large, fraction of this stored energy will be released as heat during a crack

Interesting fact: magnets impregnated with paraffin wax show almost no training although the wax is full of cracks after cooldown.

Presumably the wax breaks at low σ before it has had chance to store up any strain energy

'Pulsed Superconducting Magnets' CERN Academic Training May 2006

How to reduce training?

1) Reduce the disturbances occurring in the magnet winding

- make the winding fit together exactly to reduce movement of conductors under field forces
- pre-compress the winding to reduce movement under field forces
- if using resin, minimize the volume and choose a crack resistant type
- match thermal contractions, eg fill epoxy with mineral or glass fibre
- impregnate with wax but poor mechanical properties
- most accelerator magnets are insulated using a Kapton film with a very thin adhesive coating

2) Make the conductor able to withstand disturbances without quenching

- increase the temperature margin
 - operate at lower current
 - higher critical temperature HTS?
- increase the cooling
- increase the specific heat

most of **2**) may be characterized by a single number

Minimum Quench Energy MQE

= energy input at a point which is just enough to trigger a quench

Martin Wilson Lecture 4 slide28

Quench initiation by a disturbance

- CERN picture of the internal voltage in an LHC dipole just before a quench
- note the initiating spike conductor motion?
- after the spike, conductor goes resistive, then it almost recovers
- but then goes on to a full quench
- can we design conductors to encourage that recovery and avoid the quench?

Martin Wilson Lecture 4 slide29

Minimum propagating zone MPZ

- think of a conductor where a short section has been heated, so that it is resistive
- if heat is conducted out of the resistive zone faster than it is generated, the zone will shrink - vice versa it will grow.
- the boundary between these two conditions is called the minimum propagating zone *MPZ*

 $\left|\frac{1}{2}\right|$

• for best stability make MPZ as large as possible

the balance point may be found by equating heat generation to heat removed. *Very* approximately, we have:

$$\frac{2kA(\theta_c - \theta_o)}{l} + hPl(\theta_c - \theta_o) = J_c^2 \rho Al \qquad \qquad l = \left\{ \frac{2k(\theta_c - \theta_o)}{J_c^2 \rho - \frac{hP}{A}(\theta_c - \theta_o)} \right\}$$

where: k = thermal conductivity $\rho =$ resistivity A = cross sectional area of conductor h = heat transfer coefficient to coolant – if there is any in contact P = cooled perimeter of conductor

Energy to set up MPZ is called the Minimum Quench Energy MQE

'Pulsed Superconducting Magnets' CERN Academic Training May 2006

How to make a large MPZ and MQE

$$l = \left\{ \frac{2k(\theta_c - \theta_o)}{J_c^2 \rho - \frac{hP}{A}(\theta_c - \theta_o)} \right\}^{\frac{1}{2}}$$

- make thermal conductivity k large
- make resistivity ρ small
- make heat transfer hP/A large (but $\Rightarrow \log J_{eng}$)

'Pulsed Superconducting Magnets' CERN Academic Training May 2006

Large MPZ \Rightarrow *large MQE* \Rightarrow *less training*

$$l = \left\{ \frac{2k(\theta_c - \theta_o)}{J_c^2 \rho - \frac{hP}{A}(\theta_c - \theta_o)} \right\}^{\frac{1}{2}}$$

- make thermal conductivity k large
- make resistivity ρ small
- make heat transfer term hP/A large

- NbTi has high ρ and low k
- copper has low ρ and high k
- mix copper and NbTi in a filamentary composite wire
- make NbTi in fine filaments for intimate mixing
- maximum diameter of filaments $\sim 50 \mu m$
- make the windings porous to liquid helium
 superfluid is best
- fine filaments also eliminate flux jumping (see later slides)

Martin Wilson Lecture 4 slide32

Measurement of MQE

-O-Porous metal - ALS 83 bare ----- bare wire 100 1 T 10 -0.4 0.5 0.6 0.7 0.8 0.9 1.0 I / Ic

 \rightarrow open insulation

Martin Wilson Lecture 4 slide33

AC loss and Training: concluding remarks

- ac losses may be calculated from the sum of 5 terms; 2 in the wires and 3 in the cable
 in most practical situations, these terms are independent
- refrigeration load is calculated by summing over the winding volume
- peak temperature rise may be found by calculating conduction through the cable + insulation and heat transfer to the helium coolant
- different heat transfer mechanisms apply for boiling liquid helium, supercritical helium and superfluid helium
- the peak temperature rise reduces the temperature margin (safety factor) of the magnet
- ac loss may be measured calorimetrically or electrically
- training is thought to be caused by the transient release of mechanical energy within the magnet (before fine filaments it was also caused by flux jumping)
- training may be reduced (not yet cured) by
 - a) reducing the energy release
 - b) making conductors which can absorb a certain energy without quenching

'Pulsed Superconducting Magnets' CERN Academic Training May 2006