GEANT4 validation with HCAL TB2004 data

J. Damgov (INRNE/FNAL), S. Piperov (INRNE/FNAL), S. Kunori (U. of Maryland) et al.

2 HB production wedges, 1 HE prototype wedge HO layers on a movable table at CERN H2 beam line.

TB2004 setup

beam

TB2004 simulation with GEANT4

Simulation of the HCAL TB2004 is done with OSCAR_3_7_0 package, which is based on Geant4.6.2.p02. LHEP-3.7,QGSP-2.8,QGSC-2.9,FTFP-2.8

Setup doesn't work with OSCAR 5 – the new QGSP.

•Detailed HCAL geometry with HB1&HB2 read-out schema.

ECAL – crystals, Al box and Al block behind ECAL.
Beam line - trigger counters and wire chambers

HB readout scheme

e

Beam line with particle identification

electrons 9-100 GeV

muons 80/150 GeV

CK2- electron CK3- pion / kaon / proton V3, V6, VM – muon

9 GeV pi+

mip in ECAL, i.e. no-interaction in ECAL

Need a lot of clean-up !

7

Beam cleaning strategy

Beam particle ID counters have efficiency constrain

- Muon veto (VM,V3,V6)
- Electron ID(CK2):92%
- Protons,Kaons/Pions separation(CK3)
- VLE tag(SCI_VLE): VLE vs punch through muons

Calorimeter based cuts

- Electrons clean ID
- Interaction in the beam line – source of systematics
- Muons form pions decay

Particle ID counters

<u>Muon ID</u>

* VM : large scintillators block – tags punch-true muons, placed behind HCAL

- * VM3 : mounted on HB back at phi=3
- * VM6 : mounted on HB back at phi=6

Electron ID

*CK2 : cerenkov counter – tags electrons less then 92% efficiency. Used for 5-15 GeV beams.

Proton ID

*CK3 : cerenkov counter - tags protons and kaons at certain energy range:
P(pi,GeV) P(mu,GeV) P(p,GeV) P(K,GeV)
3.5 2.65 23.5 12.35
less then 98% efficiency.
4.4% of pi-- 9GeV are "proton tagged"
19.7% of pi+ 9GeV are "proton tagged"

<u>VLE ID</u>

*SCI_VLE : scintillator at the VLE line – tags VLE beam particles.

<u>Interaction at the beam line</u> *Wire Chambers: single hit requirement.

Beam content: Particle ID counters

Pi- tunes:

Energy [GeV]	tagged Muons	tagged electrons	No-e&No-mu	No-e&No-mu&WC-veto
15	10.8%	33.2%	56.0%	39.8%
10	6.9%	68.7%	24.4%	16.9%
9	1.4%	6.0%	62.0%	31.7%
7	3.5%	9.4%	60.3%	25.4%
5	5.4%	6.0%	53.3%	26.5%
3	28.9%	27.7%	24.3%	11.8%
2	85.2%	6.9%	2.2%	1.0%

The particle Id counters are used for low energy beam tunes 2-15 GeV •2-9 GeV are produced by the VLE beam line setup.

•10,15 GeV are the lower available energy from the high energy beam line setup.

• 30-300 GeV are using the calorimeter based cuts only.

2 and 3 GeV are not used.

Calorimeter based cuts

	(E_{HC})	$E_{AL}/a + E_{ECAL}/b) > 1.$	(E_{H}^{2})	$C_{CAL}/a + E_{ECAL}^2/b) > 1.$	$E_{ECAL} > c$
Energy [GeV]	а	b	а	b	с
300	120.	120.	-	-	-
150	70.	60.	-	-	-
100	54.	46.	-	-	-
50	26.	22.	-	-	-
30	10.	7.	-	-	24
15	6.	2.5	-	-	12.5
10	3.	1.3	-	-	7.8
9	-	-	1.0	0.5	7.4
7	-	-	1.0	0.5	5.4
5	-	-	1.0	0.5	3.7

ECAL cut: removes electrons F(ECAL,HCAL): muons and interaction in the beam line.

Calorimeter based cuts

For very low energy F(ECAL,HCAL) cut is not very effective for rejection of the muon contamination in the beam . Also rejects only a fraction of the interaction in the beam line events.

Interaction in the beam line

Energy deposition in 1x1 and 3x3 tower matrix is used to identify interaction in the beam line events.

Calibration of the calorimeters

The uniformity calibration is done with Co⁶⁰, per-tower and per-layer with precision 3-4%

Energy scale: ECAL: 100 GeV e-HCAL: 50 GeV pi- with MIP in ECAL.

Calorimeter response to pions: ECAL+HCAL

"TB like" G4 the same calorimeter based cuts like in the data cleaning

GEANT4: 7-10 GeV transition region from high to low energy parametrization.

Calorimeter response to pions: ECAL+HCAL (cont.)

Effect of the interaction in the beam line and selection cuts: G4 "ideal" - no interaction in the beam line and calorimeter based cuts G4 "TB like" - data like event selection.

Limits on the lower end of the momentum range.

Energy spectrums: data vs GEANT4

HCAL : ECAL energy deposition – Data vs GEANT4

ECAL response is lower in GEANT4: geometry or physics or ...? 18

Response to pions of HCAL alone

Source of uncertainties

- Interaction in the beam line
- Pion decay
- Beam contamination
- Calorimeter based cuts
- Statistical error small
- Energy calibration error small
- Beam energy error negligible

Uncertainties estimation

Energy scale HCAL: +0.25 -0.65% bases on the MIP in ECAL value Wire source: +- 1.6%

Fraction of the events with pion in-fly decay is taken from GEANT

Interaction in the beam line

Uncertainties estimation (cont.)

ECAL+HCAL

P[GeV]	Stat	(0,0)cut	ECAL cut	Beam muons	pi decay	beam int.	All
300	+-0.12%	+1.9% -0.21%	-	-	-	-	+2.5% -1.8%
150	+-0.15%	+1.8% -0.43%	-	-	-	-	+2.4% -1.8%
100	+-0.17%	+0.9% -0.77%	-	-	-	-	+1.9% -1.9%
50	+-0.18%	+1.13% -1.51%	-	-	-	-	+2.0% -2.3%
30	+-0.28%	+1.54% -2.0%	+0.15% -0.04%	-	-	-	+2.3% -2.7%
15	+-0.27%	+1.37% -0.65%	+0.16% -0.08%	-	-	-	+2.2% -1.9%
10	+-0.42%	+1.53% -1.41%	+0.51% -0.13%	+0.05%	+0.19%	+0.39%	+2.3% -2.3%
9	+-0.25%	+1.2% -1.5%	+0.12% -0.09%	+0.01%	+0.98%	+1.94%	+5.5% -2.3%
7	+-0.25%	+0.95% -0.96%	+0.19% -0.19%	+0.00%	+0.69%	+1.67%	+2.7% -2.0%
5	+-0.33%	+3.6% -2.49%	+0.28% -0.28%	+0.00%	+0.12%	+1.23%	+4.2% -3.1%

HCAL alone (MIP in ECAL)

P[GeV]	Stat	(0,0)cut	Beam muons	pi decay	beam int.	All
300	+-0.39%	+4.7% -0.85%	-	-	-	+4.7% -0.94%
150	+-0.38%	+4.6% -1.3%	-	-	-	+4.6% -1.4%
100	+-0.39%	+3.2% -1.8%	-	-	-	+3.2% -1.8%
50	+-0.24%	+2.5% -3.8%	-	-	-	+2.5% -3.8%
30	+-0.48%	+3.8% -2.6%	-	-	-	+3.8% -2.6%
15	+-0.53%	+3.0% -2.9%	-	-	-	+3.1% -2.9%
10	+-0.82%	+3.9% -4.1%	+0.16 %	+1.15%	+3.2%	+5.3% -4.2%

21

Longitudinal Shower Profile

In HPD cross-talk without magnetic field

16

0

.5

0.4

0.35

100 GeV e-

uncorrected

In the test beam environment there to compensate the is necessary.

Longitudinal shower profiles (cont.)

Conclusions and Outlook

- Monte Carlo prediction agree well with the HCAL TB2004 data.
- LHEP seems to model shower profile better than QGSP(2.8) for energies above 150 GeV (TB2004 simulation doesn't work with OSCAR 5.0.0)
- The ECAL response to pions is higher in the simulation for 7GeV and below.
- There will be another test beam this summer. Better particle ID and tagging of the interaction in the beam line events are designed. Real ECAL super-module will be used.