
  

 

Job Submission Tutorial 
NGS Induction Event,

Guy Warner, NeSC Training Team
  

The aim of this tutorial is to walkthrough submitting programs (called jobs) to the NGS and retrieving the output. This 
tutorial does not require any knowledge of programming and the programs used are already in your account. An account 
has already been created for you on the NGS node at the Rutherford Appelton Laboratory and all the jobs in this tutorial 
will be sent there to run. All commands (highlighted like this) should be entered in a terminal window on training-ui.nesc.
ed.ac.uk. Through-out this document examples of output have been inserted and they appear in a box like 

this

1.  Connect with secure shell to training-ui.nesc.ed.ac.ukusing the "Putty" ssh client which may be found from the "Start 
Menu" under "All Programs" then "CC Open Access Labs Menu", "Network" and finally "Putty Access to UNIX 
" (enable X11 forwarding).

2.  At the end of the previous tutorial you should have destroyed your grid-proxy. All the job submission and control 
programs used by the NGS are part of the Globus Toolkit (version 2.4) and depend on your having a valid proxy. 
Launch a new proxy with 

grid-proxy-init

3.  The simplest command for job submission is globus-job-run. The minimum parameters used by this command are 
where to send the job and what the program to run is. Submit your first job with the command 

globus-job-run grid-data.rl.ac.uk /bin/hostname -f

grid-data.rl.ac.uk is the head node (a node users can directly access) at R.A.L. 

[gcw@lab-07 gram]$ globus-job-run grid-data.rl.ac.uk /bin/hostname -f
grid-data.rl.ac.uk

Since you directly told globus-job-run to run on this node, the result should hardly surprise you.

4.  The next step is therefore to use a system of accessing all the nodes at R.A.L. To do this submit the job to a job 
queue running on the head node. When a suitable node becomes available your job will be submitted to it from this 
queue. It is possible for multiple queues to exist at a single site so when you tell globus-job-run where to run you 
provide the name of the queue. A group of processors have been reserved for your use at R.A.L. These are 
accessed by submitting jobs to a special queue. You will be told the value to replace the XXXXX during the 
tutorial. This time run the command 

globus-job-run grid-data.rl.ac.uk/jobmanager-pbs -q RXXXXX /bin/hostname -f

where jobmanager-pbs is the name of the queue. 

[gcw@lab-07 gram]$ globus-job-run grid-data.rl.ac.uk/jobmanager-pbs /bin/hostname -f
grid-data12.rl.ac.uk

5.  You may have noticed that globus-job-run waits for your job to complete before exiting. The standard output of the 
job is sent directly to your terminal. Whilst this is not a problem for very short and simple jobs, this is not a good 
system for long jobs. Long jobs need to be submitted and occasionally checked, and then the output may be 
retrieved, possibly many hours or days later. The solution to this is to use globus-job-submit, a command very 
similar to globus-job-run except that it outputs a unique identity (uid) string for your job and then exits. The job is still 
running and other commands exist for checking on the job, retrieving the job's output and cleaning up after the job. 
Enter the command 

globus-job-submit grid-data.rl.ac.uk/jobmanager-pbs -q RXXXXX /bin/hostname 
-f



All subsequent commands depend on this uid to identify the job. If you are not familiar with Linux use <Ctrl>-
<insert>to copy highlighted text and <Shift>-<Insert>to paste. In the following commands replace <uid> with the 
uid of your job. To check on your job and find its status use the command 

globus-job-status <uid>

Repeat this command every few seconds until your job has achieved the status of "Done". In this context "Done" 
means your job has finished as far as the grid middleware is concerned, it does not necessarily mean your job did 
what you expected it to do. Next retrieve the standard output with 

globus-job-get-output <uid>

and finally clean up any temporary files created by your job with 

globus-job-clean <uid>

Answer "Y" when asked if you are sure. 

[gcw@lab-07 gram]$ globus-job-submit grid-data.rl.ac.uk/jobmanager-pbs /bin/hostname 
-f
https://grid-data.rl.ac.uk:64001/1415/1110129853/
[gcw@lab-07 gram]$ globus-job-status https://grid-data.rl.ac.
uk:64001/1415/1110129853/
DONE
[gcw@lab-07 gram]$ globus-job-get-output https://grid-data.rl.ac.
uk:64001/1415/1110129853/ 
grid-data12.rl.ac.uk 
[gcw@lab-07 gram]$ globus-job-clean https://grid-data.rl.ac.
uk:64001/1415/1110129853/     
    
    WARNING: Cleaning a job means:
        - Kill the job if it still running, and         
        - Remove the cached output on the remote resource
        
    Are you sure you want to cleanup the job now (Y/N) ?     
    Y    
    
    Cleanup successful. 

6.  The examples so far have involved running a standard system program (hostname). The next stage is therefore to 
submit a simple custom program. The first program to use is "myjob.sh" which has been installed within your 
account. This program just prints the present working directory, the hostname again and also all the environmental 
variables currently set. Run the following commands to view and run this script on your local machine 

cd ~/gram
cat myjob.sh 
./myjob.sh 

[gcw@lab-07 gram]$ cat myjob.sh
#!/bin/sh
echo $PWD
hostname -f
env

[gcw@lab-07 gram]$ ./myjob.sh
/home/gcw/gram
lab-07.nesc.ed.ac.uk
MANPATH=/opt/globus/man::/opt/edg/share/man:/opt/lcg/share/man:/opt/edg/man
HOSTNAME=lab-07.nesc.ed.ac.uk
GRID_PROXY_FILE=/tmp/x509up_u501
LCG_LOCATION_VAR=/opt/lcg/var
TERM=xterm

Now try running this job using globus-job-submitin the same way as previously shown. You will find that you 



  

got no output. Something is not working here. To diagnose the fault it is necessary to view the logfile that can be 
found in your account on the head node. Log on to the head node using gsissh (a version of ssh modified to use 
GSI authentication). 

gsissh -p 2222 grid-data.rl.ac.uk

The log file will be in the top level of your account. Only jobs that fail keep their logfile, successful jobs result in the 
logfile being removed. If you have multiple log files in your account you can identify the relevant logfile by 
comparing your uid to the filenames. For example if you have a uid 

https://grid-data.rl.ac.uk:64001/2487/1110130165/

then the relevant logfile is 

gram_job_mgr_2487.log

When the logfile is viewed you will see that it contains a lot of information (replace the XXXX appropriately) 

cat gram_job_mgr_XXXX.log

The relevant line may be found using 

grep -a job-failure-code gram_job_mgr_XXXX.log

You should now have that your job failed with error code 5 (at the time of writing this tutorial a minor problem with 
the training accounts is presenting this error number being correctly reported, so don't worry if you don't get this 
exact output). If you look at a the list of error codes (see GRAM Error Codes) you will see that error code 5 means 
the executable was not found. This is because the script myjob.sh does not exist on the node running the job, it only 
exists on your local machine. To make the file exist on the node it is necessary to send the script with your job, a 
process called Staging. 

[gcw@lab-07 gram]$ gsissh -p 2222 grid-data.rl.ac.uk
Last login: Sun Mar  6 13:45:32 2005 from lab-07.nesc.ed.ac.uk
ClusterVision Red Hat Enterprise 3.0 on Intel distribution v0.9
 
Use the following commands to adjust your environment:
 
'module avail'     - show available modules
'module add '      - add a module
 
You should at least load a module for a compiler and a mpich
version of choice in your .tcshrc or .bashrc file.
 
----------------------------------------------------------------
[ngs0249@grid-data ngs0249]$ cat gram_job_mgr_2487.log
3/6 17:29:25 JM: Security context imported
3/6 17:29:25 JM: Adding new callback contact (url=https://lab-07.nesc.ed.ac.
uk:20001/, mask=1048575)
3/6 17:29:25 JM: Added successfully
....
[ngs0249@grid-data ngs0249]$ grep -a job-failure-code !$
grep -a job-failure-code gram_job_mgr_2487.log
job-failure-code: 5

Before continuing exit the remote machine 

exit

Try running the same job but with the command (note the extra -s): 

globus-job-submit grid-data.rl.ac.uk/jobmanager-pbs -q RXXXXX -s ./myjob.sh

This time you should be able to retrieve the expected output. 
7.  The previous programs have only used standard output for displaying their results. Many programs will output to 

files as well as to standard output and hence the question is what happens to these files. Inspect the file myjob2.sh 

  

http://homepages.nesc.ac.uk/~gcw/NGS/GRAM_error_codes.html


in the same directory of your account. You will see that the environmental variables are now saved in a file called 
myenv.txt. Run this job and get it's output (and clean up). 

You will notice you still got the present working directory and hostname on the standard output. The file myenv.txt is 
actually written to your home directory on the head node. Rather than view this file by logging on to the head node, 
copy the file to your current directory instead: 

gsiscp -P 2222 grid-data.rl.ac.uk:myenv.txt .

You can now view the file myenv.txt.
8.  Returning to the topic of staging, if you are running the same job multiple times it is better if the program is stored 

somewhere accessible by a node running this job. Your account on the head node is the ideal place for this. In your 
account is a file called "myhostname.c" which is a simple piece of C code that prints out the hostname. Compile this 
code and initially submit this program as a job using staging. To compile this code use the command: 

gcc myhostname.c -o myhostname

Now upload myhostname.c to the head node using gsiscp and compile (and test) it there. You will now be 
able to run the job without using staging.Since the program is sitting in the top level of your account on the head 
node you will not need to provide a path to the executable. 

[gcw@lab-07 gram]$ gsiscp -P 2222 myhostname.c grid-data.rl.ac.uk:
[gcw@lab-07 gram]$ gsissh -p 2222 grid-data.rl.ac.uk
Last login: Sun Mar  6 18:18:11 2005 from lab-07.nesc.ed.ac.uk
ClusterVision Red Hat Enterprise 3.0 on Intel distribution v0.9
...
[ngs0249@grid-data ngs0249]$ gcc myhostname.c -o myhostname
[ngs0249@grid-data ngs0249]$ ./myhostname
host is grid-data.rl.ac.uk
[ngs0249@grid-data ngs0249]$ exit
logout
Connection to grid-data.rl.ac.uk closed. 

9.  For the final stage of this tutorial the issue of job dependencies is looked at. In your account is a fortan77 file called 
sdot_example.f. You will need to upload this file to the headnode. This program computes the dot product of two 
vectors, taking the first five entries of the first vector and alternating entries from the second vector. For those tutees 
less interested in Mathematics, the answer is 10. This code relies on a set of libraries that are available on all of the 
core NGS sites (at least) in the module intel-math. Log on to the head node and load the intel-math module using 
the command 

module load intel-math

The command to compile the code is 

f77 -w sdot_example.f -lmkl_ia32 -lguide -lpthread -o sdot_example 

[ngs0249@grid-data ngs0249]$ module load intel-math
[ngs0249@grid-data ngs0249]$ f77 -w sdot_example.f -lmkl_ia32 -lguide -lpthread -o 
sdot_example
[ngs0249@grid-data ngs0249]$ ./sdot_example
 SDOT =   10.
[ngs0249@grid-data ngs0249]$ exit   

Once you have compiled the code test the program by running it and then log off the head node. Next try 
submitting the jobin the usual way. You should find that the job fails to produce the expected output. So far the 
command globus-job-get-output has been used to retrieve the standard output, but it can also be used to retrieve 
any standard error messages that have been produced in attempting to run your job. Use the below command with 
the uid of the job that has just failed 

globus-job-get-output -err <uid>

from which you should see that the your program could not find a library it depends on to run. This is because 
submitted jobs need to be told to load the appropriate modules in the same way you loaded the modules when 
logged into the head node. This time submit your job with the command (all on one line) 

globus-job-submit grid-data.rl.ac.uk/jobmanager-pbs -q RXXXXX -x '&



(jobtype=single)(environment=(NGSMODULES intel-math))' sdot_example 

and the job should now run successfully. 
10.  If you have time left in the tutorial try creating some jobs of your own. You could also explore the other modules 

available on the NGS core nodes. When logged on to the head node use 

module avail

to get a list of the available modules. Alternatively you could explore the other options supported by the globus 
commands. All of the globus commands provide a detailed description of their usage by running the command with -
help as the only command line parameter.

    


	homepages.nesc.ac.uk
	Job Submission Tutorial


