

Outline

- List of main upgrades for 8.1
- Multiple Scattering evolution
- Test results
- Conclusions

Ionization Processes Update

Mass/charge/spin corrections

- Small difference in ionization for π^- , π^+ , p
- No significant effect on shower shape
- Main effect on heavy ion ionization
- Finite size corrections effective to heavy ions
- NIST stopping power data for protons and He4 ions Bragg peak simulation
- ICRU73 stopping data for water a prototype for universal method to use measured stopping powers for specific combination ion/media
- Fixed computation of limit on cut value important for bremsstrahlung inside high Z media and very small cuts
- Fixed PAI models in regime with small or zero cuts important for XTR simulation
- Fixed parasitic cout

New Regimes of Energy Loss Processes

- SubCutoff regime completely reviewed and updated:
 - Lower cut values in vicinity of geometry boundary
 - Reduced mean energy loss and increased cross sections
 - May be active both for ionization and bremsstrahlung
 - Recent results will be shown below
- RandomStep regime reviewed and updated:
 - Introduced straggling of range for the last step instead of straggling of energy
 - Prototype version need evaluation

Multiple Scattering Update

- Main upgrade was done for 8.0 tuning for 8.1
- Central value of msc distribution is not changed
- Rename the model class
 G4UrbanMscModel
- Step limitation calculation is moved to the model class
- Optimized default values of parameters in the model

Multiple Scattering Update

- Improve sampling of tails of angular distribution that improving backscattering simulation
- Providing new prototype classes to simulate single Coulomb scattering:
 - G4CoulombScattering
 - G4CoulombScatteringModel
 - G4eCoulombScatteringModel

Standard EM

Gamma and X-ray Processes

- Compton remove internal limit on energy providing smooth cross section for high Z media
- Transition Radiation classes reviewed and updated
 - New algorithm for transparent radiators
 - Tuning of angular distribution of XTR photons
- Synchrotron Radiation reviewed and updated
 - Moved to xrays sub-package and split to two alternative processes
 - Analytical formula for sampling of gamma energy
 - Simulation of energetic tail of the spectrum important for linear collider study

Infrastructure and Steering

- Extend number of public methods for G4EmProcessOptions class and for UI messenger
 - Gamma threshold in bremsstrahlung
 - LPM effect activation
 - Msc step limitation
 - Subcutoff
- Unification is achieved for standard EM components of Physics Lists inside physics_lists tree and in examples

Examples

Completed the set of Geant4 extended examples (18 different EM use-cases

- Used in regular G4 tests
- Used by verification suite for standard EM
- G4EmCalculator helper class to compute cross sections and stopping power
 - Extend and cleanup interfaces
 - Provided examples

Testing Suite Evolution

Started as a project from Geant4 5.1

- Results are saved per Geant4 release/reference tag
- Control on main physics quantities
- Cover practically EM physics processes
- Large statistic tests for major LHC calorimeters:
 - ATLAS Barrel Pb/lAr
 - ATLAS HEC Cu/lAr
 - CMS crystal calorimeter PbWO₄
 - LHCb Pb/Sc calorimeter

Standard EM

ATLAS HEC Type Calorimeter

Standard EM

21.06.06 V.Ivanchenko

11

ATLAS Barrel Type Calorimeter

Standard EM

ATLAS Barrel Type Calorimeter

Standard EM

LHCB Type Calorimeter

Standard EM

CPU Optimization

Standard EM

CPU Optimization

Standard EM

Comparison with Published Data

- ZEUS calorimeter test beam data
 - NIM A262 (1987) 229
 - NIM A274 (1989) 134
 - E.Bernardi thethis
 - PS CERN measurements
- Needed accurate description of sizes and materials
- Results are preliminary

Conclusions

- EM standard package have been significantly updated for the release 8.1
 - Tuning of multiple scattering
 - SubCutoff and Random step
 - Ionization corrections
 - XTR and SR updated
 - Number of fixes
- User interfaces and examples significantly improved
- Tests shows stability of results
- CPU performance is an issue and we have new instruments to tune EM physics
 - Close cooperation with experiments may be useful