

Introduction to Particle Physics (for non physics students)

PROFESSOR FRANK CLOSE
EXETER COLLEGE
UNIVERSITY OF OXFORD

How Old is the Universe?

20.00) Creation Big BANG

world cup 1st half; 2nd half; sleep

05.00 SUN --- EARTH 06.00

breakfast; come to lectures

09.30 Oldest Fossils
09.59;30" est Humanolds

09.59 - And The Millenium

10.00

patterns and structures when cold (low energy)

Symmetry when warm (high energy)

MATTER

ANTIMATTER

...why didn't it mutually destruct? ...why is there anything left?

Matter and the Universe

Cosmologie Physique des Particules Astrophysique Physique Nucleaire Physique du Solide Astronomie Chimie-Biologie Geophysique Mecanique 10-15 10-12 10-9 10-6 10-3 1 103 106 109 1012 1015 1018 1021 1024 m km Mm Gm Tm Pm Em fm mm pm nm μm > 40 orders of magnitude C Fables MOTSCH 199 What is matter made of?

Light source

Object

Eye

Light source

Object

Eye

Catch 22:

There's a limit to what we can see with our eye

Beyond (normal) vision

Catch 22:

There's a limit to what we can see with our eye

To look at smaller things we need to use instruments that can "extend" our vision

2. Smash

...some definitions for **ENERGY**.

Joules are too big for particle energies....

and

0.000000000000000001

Joules is too messy....

So we need more Practical Units

eV, keV,MeV,GeV and welcome to TeV

...some definitions for **ENERGY**

Joules are too big for particle energies....

and

0.000000000000000001

Joules is too messy....

So we need more **Practical Units**

eV, keV,MeV,GeV and welcome to TeV

Einstein Energy

and

2

E=mc

LOOK or SMASH

Wavelength

and

Energy

profoundly related

LOOK or **SMASH**

Wavelength

and

Energy

profoundly related

3. Heat

... also profoundly related.....

How To learn what things are made of resolution emperature

SMASH or HEAT

Energy

and

Temperature

SMASH or HEAT

Energy

and

Temperature

Beyond (normal) vision

eV m

Eye Limit 10

Bacteria 10-5

Wavelength of Light 1-10eV 10-6-7

Atom 10-19

Nucleus 100MeV-1GeV 10-14-15

Quarks and Electrons ITeV 10-18

Planck Length Fin 10 GeV 10-35

The Universe

in

Temperature
Energy and
Time

...and the nature of matter

Particles in Three Minutes

A quick survey of how we got here....

....and where we think we're going next.

Electron and Proton utterly different.

proton
2000
times
heavier

10000 times bigger

ELECTROMAGNETIC force binds electrons

FORCES

in the atom

Cosmic Rays had revealed STRANGE particles

1955 CERN accelerators replicate cosmic rays on Earth...

..record the images and reveal the real heart of matter....

.....the beginnings of modern high energy particle physics

Electron and quark very similar in

Mass Size Spin

and in how they respond to the FORCES

patterns and structures when cold (low energy)

Symmetry when warm (high energy)

FORCES 1955-2005

Standard Model of Quarks Leptons and forces

- = pattern based on mass
- "cold" ="low" energy
- = below 1 TeV

Standard Model of Quarks Leptons and forces

= pattern based on mass

"cold" ="low" energy

= below 1 TeV

superSymmetry
when "warm"
(= high energy > 1TeV)

Higgs Boson Supersymmetry Nature of Reality

Standard Model MASS

Nuclear Isotopes

Mendeleev

Snowflake

mel

3K

