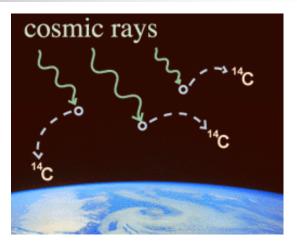
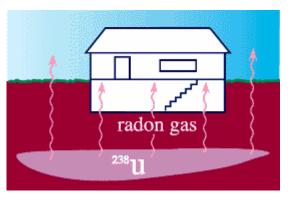

Introduction to Radiation Protection

Thomas Otto Radiation Protection Group CERN

Contents


Introduction


- Radiation, Effects and Framework of Protection
 - Dose and effective dose
 - Radiation effects: from radiobiology to epidemiology
 - Acceptable risk, legal dose limits
- Practical radiation protection
 - Protection against prompt radiation
 - Optimisation of maintenance work
 - Prospective and preventive radiation protection

Radiation is Everywhere

- Cosmic radiation (muons, neutrons, ...)
- Cosmogenic radioactive elements (¹⁴C, ⁷Be, ³H)
- Terrestrial radiation (U, Th, Ra, Rn ...)
- Your body content: ⁴⁰K

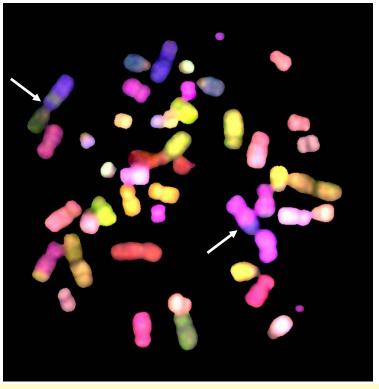
Beneficial Use of Radiation

Energy Generation

Radiodiagnostics Radiotherapy

Research

5.7.2006


Hazards of Ionising Radiation

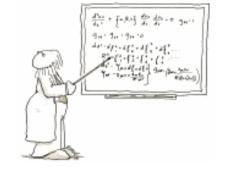
Deterministic effects: e.g. Radiation burn

Stochastic effects: e.g. viable cell mutation

Anderson et al, PNAS <u>99</u>, 12167 (2002) (*in vitro*)

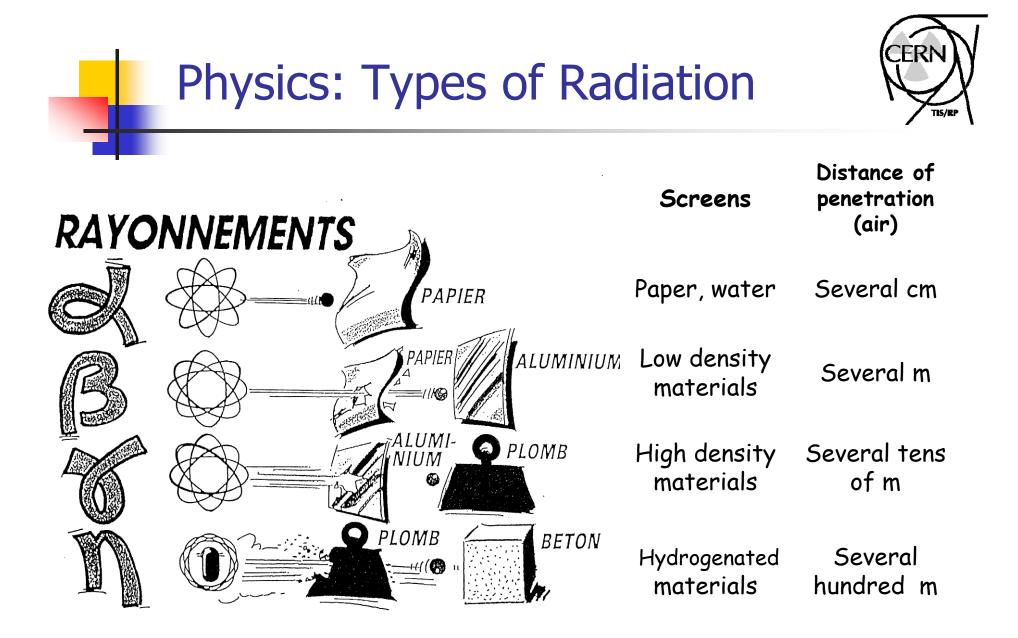
Anderson et al, Radiat Res 163, 26 (2005) (in humans)

5.7.2006

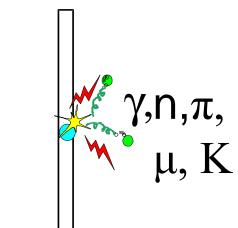


- Protection of man and the environment from detrimental effects of ionising radiation.
- Not included: Protection of the patient during medical applications of ionising radiation
- Included: Naturally occuring radioactive materials (NORM), e.g. Rn

To achieve its goal, Radiation Protection draws upon

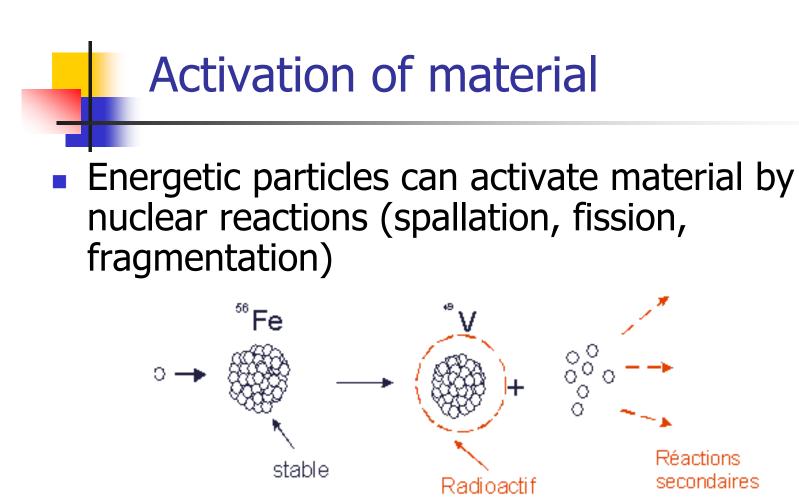


Sociology


Physics:

- Characterise sources of radiation
- Quantify radiation exposure: dosimetry
- Physical means of protection: shielding
- Biology:
 - Quantify radiation risk: radiation biology, epidemiology
- Sociology, Economy:
 - What level of risk is acceptable ?
 - Which level of protection is affordable ?
- Legislation:
 - Codification of protection standards into laws and refgulations

Radiation in an accelerator



Particles (protons, electrons) are guided in an accelerator or beamline

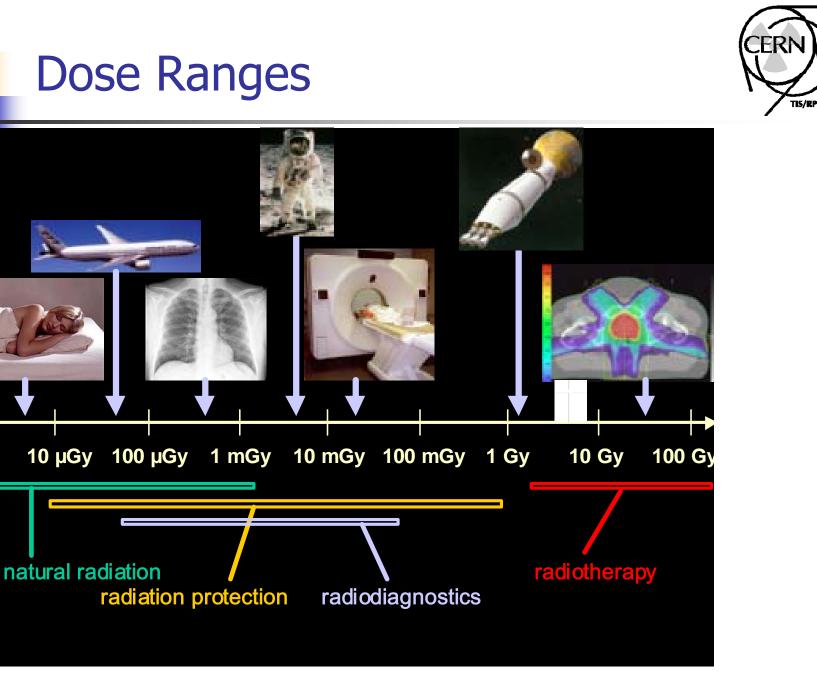
Beam loss – collision of accelerated particles with the accelerator structure

It leads to emission of ionising radiation in form of particles and e.m. radiation

5.7.2006

- Objects exposed to beam (loss) become emitters of ionising radiation (mostly $\beta/\gamma)$

Physics: Dosimetry

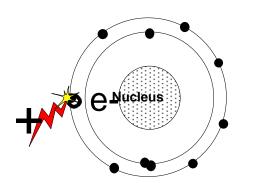

Quantification of ionising radiation

The **absorbed dose**, D, is the quotient of $d\epsilon$ by dm, where $d\epsilon$ is the <u>mean energy imparted</u> by ionising radiation to matter of mass dm, thus

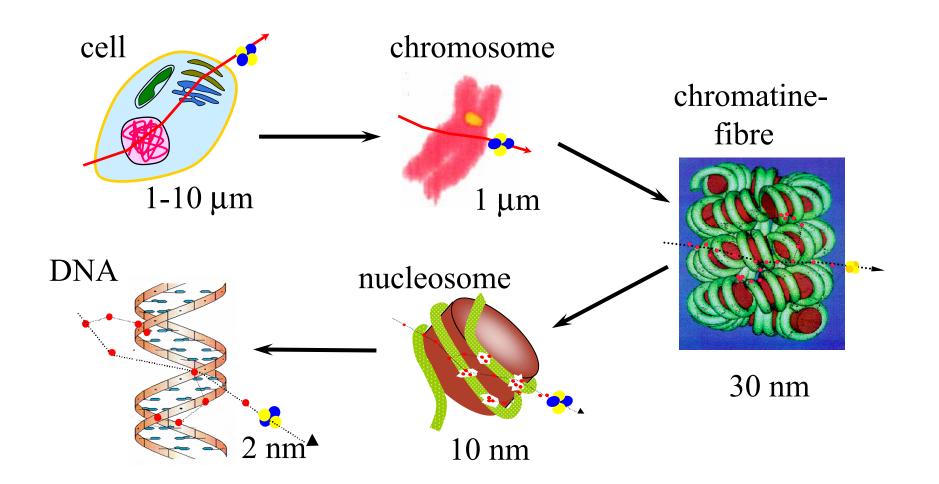
$$D = \frac{d\varepsilon}{dm}$$
 (Unit : J/kg or gray)
Energy imparted is a *stochastic quantity* which is
described by probability distributions.
(definition by ICRI

N.B.: an absorbed dose of 1 Gy leads to a temperature increase of only 2.4 $.10^{\text{-4}}\ ^{\circ}\text{C}$

 \mathbf{J}

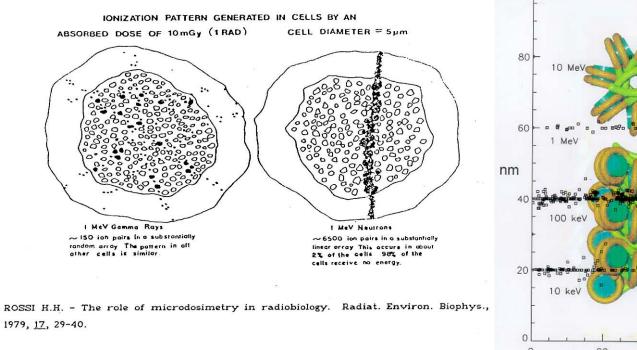


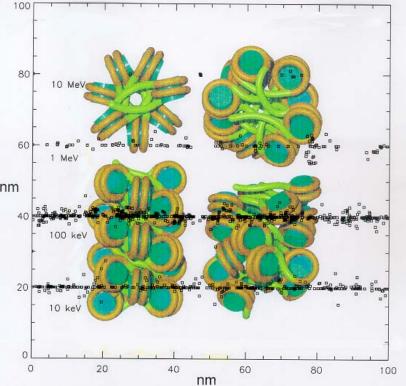
5.7.2006


Interaction with matter is stochastic and discontinuous:

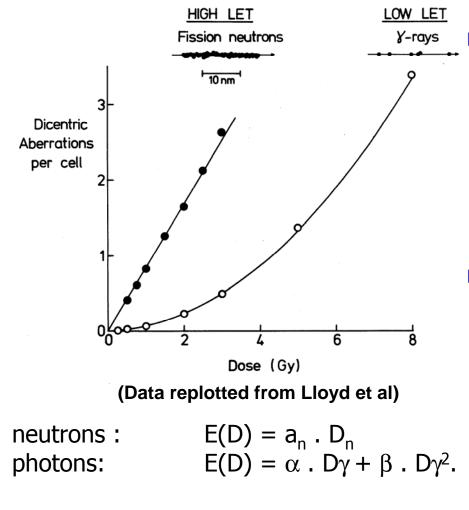
Ionising radiation delivers energy in "packages" large enough to bring about physical and chemical changes on the atomic level

Biology: Cellular and molecular radiation effects




5.7.2006

Relative Biological Effectivenes


Spatial distribution of radiation interaction depends on type and energy of particle ("track structure")

Biology: Chromosome aberrations

 Damaged DNA may lead to

- Viable mutated cells
- Tumor ?
- Hereditary effects
- Study in
 - Cell cultures (in vitro)
 - Experimental animals (in vivo)
 - Large populations (epidemiology)

5.7.2006

Absorbed dose per organ ("tissue"), weighted for radiation (w_R) and tissue (w_T) type and summed over the body

$$E = \sum_{T} w_{T} H_{T} = \sum_{T} w_{T} \sum_{R} w_{R} D_{T,R} [Sv]$$

$$w_{\rm R} = 1 \dots 20; w_{\rm T} = 0.01 \dots 0.20$$

Purpose:

Approximately quantify radiation risk at small doses with the aim of risk limitation and optimisation.

- Case-Control Studies observe large populations exposed to a certain risk factor and compare with unexposed populations
- $\lambda_{u_{,}} \lambda_{e}$: probability of an event (e.g. cancer) in the unexposed and the exposed population
- Relative risk : $RR = \lambda_e / \lambda_u$
- •Excess relative risk: ERR = $(\lambda_e \lambda_u) / \lambda_u = RR 1$
- •Excess absolute risk : $EAR = \lambda_e \lambda_u = \lambda_u ERR$

- Follow up of the survivors of the nuclear bombs on Hiroshima and Nagasaki (1945)
- 87 000 individuals followed for more than 50 years
- From 1950 1997:
 - 9335 solid cancer deaths
 - 8995 expected (from control group)
 - 440 excess cancer deaths from radiation
- Excess risk related (proportional) to radiation dose

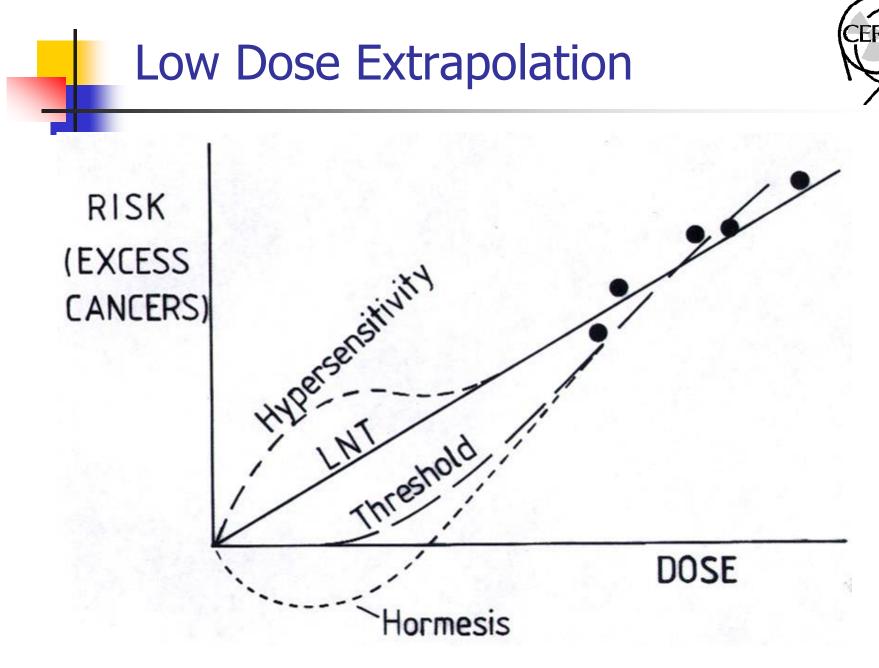
ERR for different cancers

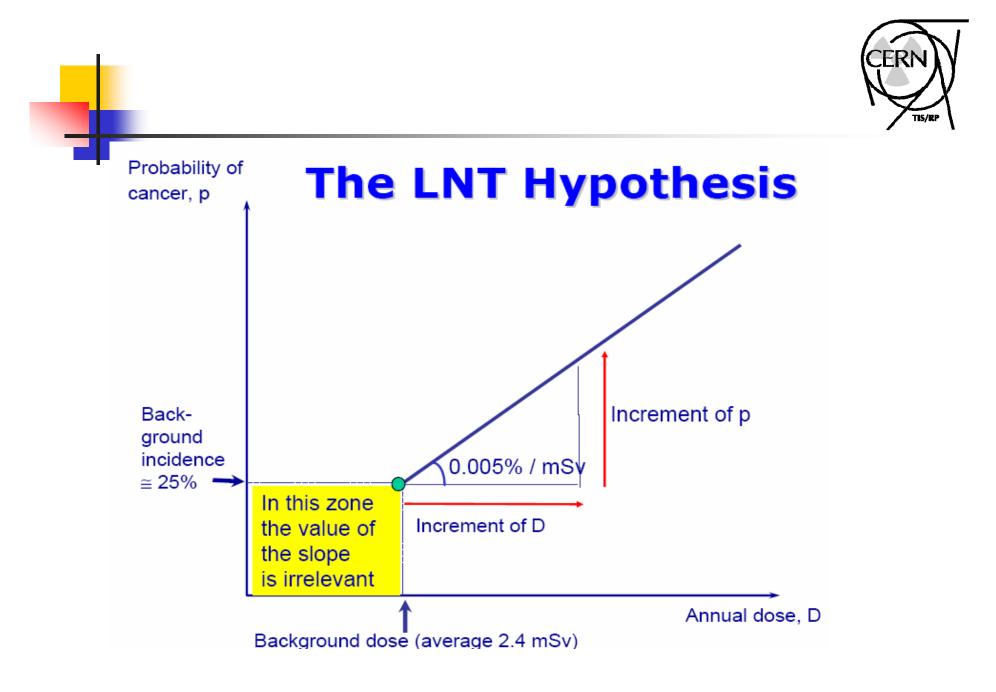
Organ	$\mathbf{ERR} \; (\mathbf{Sv}^{-1})$
All solid	0,63 (0,52 - 0,74)
cancers	
Stomach	0,32(0,16-0,50)
Colon	0,72 (0,29 – 1,30)
Liver	0,49 (0,16 - 0,92)
Lungs	0,95 (0,60 - 1,40)
Skin	1,0 (0,41 - 1,9)
Breast	1,6 (1,1 – 2,2)
(female)	
Ovaries	0,99 (0,12 - 2,3)
Bladder	1,0 (0,48 – 2,1)
Thyroid	1,2 (0,48 – 2,1)

Spontaneous risk to die from cancer: $\lambda_u \approx 0.25 \% y^{-1}$ ERR $\approx 0.5 \text{ Sv}^{-1}$, EAR = $\lambda_u 0.5 \text{ Sv}^{-1} = 0.125 \text{ Sv}^{-1} y^{-1}$

Lifetime absolute risk (40 years following irradiation) LAR = 40 y EAR = 5% Sv⁻¹

Chernobyl


- On 26. 4. 1986, an explosion and fire occurred in reactor 4 of the Chernobyl nuclear power plant.
- Thousands of "liquidators" worked on the Chernobyl site to secure the damaged reactor
- Widespread radioactive contamination affected Ukraine, Bielorussia, Russia and to a lesser degree, Western Europe



- Significant increase in thyroid cancers after uptake of ¹³¹I during childhood
- No epidemiological life-span study has been conducted
 - "Liquidators" were drafted and sent back to their home regions after the intervention
 - Dose of residents (town of Pripyat) only few mSv
 - Poor dosimetry
 - Dissolution of the Soviet Union in 1990
- Reports of spurious cases of malformations seem to be compatible with natural frequency

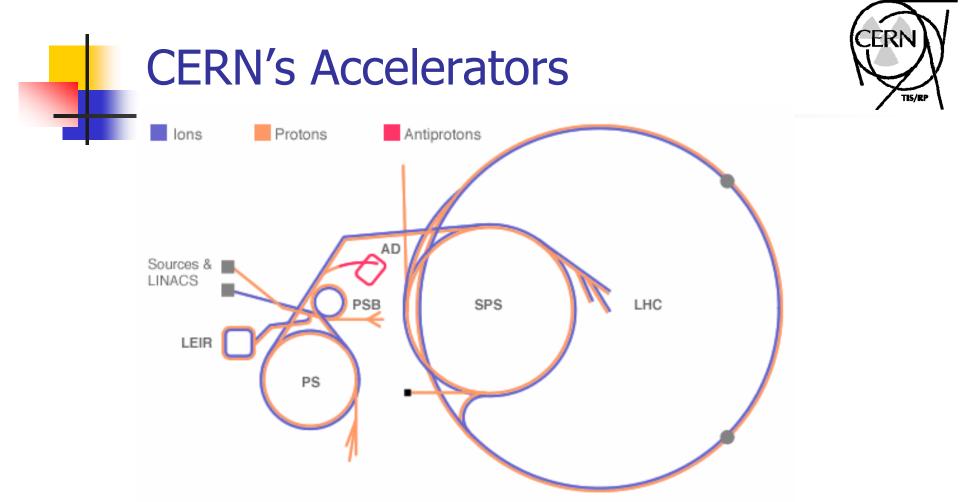
TIS/RP

Th. Otto, Radiation Protection

5.7.2006

 Radiation Risk is acceptable, if it is comparable to risk of mortality in "other" industries

Occupation	Annual risk of death
Steeplejack	1.4 10-2
Mining (USA)	10-3
Exposure to 20 mSv	10-3
Exposure to 6 mSv	3 10-4
Construction	2 10-4



Justify every use of ionising radiation

- Limit the exposure to ionising radiation to legal limits (transcribed from accepted values)
- Optimisation: Further minimise the exposure while retaining the benefits and maintaining the effort reasonable

	Dose	Risk
	1 Sv	5 10 ⁻²
unacceptable	100 mSv	5 10 ⁻³
	20 mSv	1 10 ⁻³
	10 mSv	5 10-4
Optimisation region (for workers)	1 mSv	5 10 ⁻⁵
	100 μSv	5 10 ⁻⁶
(for public)	10 µSv	<u>5 10⁻⁷</u>
broadly acceptable	1 μSv	5 10 ⁻⁸

During Accelerator operation, protect against prompt radiation from beam loss

During maintenance, protect against radiation from activated material 5.7.2006 Th. Otto, Radiation Protection

Protection against prompt Radiation

- Shielding: attenuate prompt radiation from beam losses (high dose rate)
- Access control: deny entrance to prohibited areas, control access for maintenance

Designation	Potential annual dose	Access conditions
Supervised area	> 1 mSv/a < 6 mSv/a	occupationally exposed personnel
Controlled area	> 6 mSv/a < 2 mSv/h	with electronic dosimeter, after optimisation
High Radiation	> 2 mSv/h < 100 mSv/h	with specific authorisation
Prohibited	> 100 mSv/h	

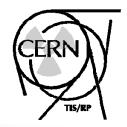
Maintenance Work

Maintenance and repair have to be performed on activated accelerator components

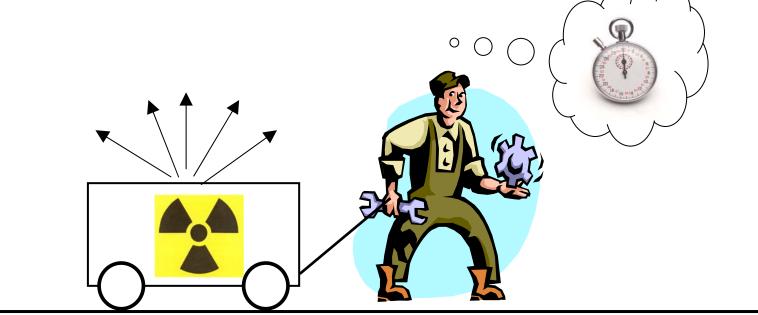
The items are often unique, tailor made exemplars.

Fault-search and repair can become very time-consuming

Optimisation Process

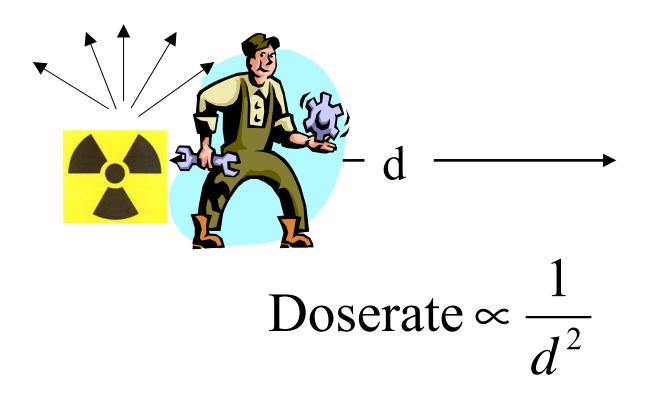

Based on a detailed plan for the work, look for alternatives resulting in a smaller personal dose

	Collimator ex	h bolts.										
	Actions	Duration	Accumulated Dose (µSv)									
		(min)	1h	8h	1d	3d	1w	1m	4m	1y		
(1)	Transportation of material	4×5	120	84	39	21	15	9	3	3		
(3)	Connection of 2 pumping stations	2×15	301	203	161	126	98	49	21	14		
(3)	Connection of leak detector	5	51	34	27	21	16	8	4	2		
(3)	Leak detection	10	102	69	55	43	33	17	7	5		
(2)	Fine leak detection / confirmation	10	129	86	69	52	40	21	10	5		
(4)	Installation of venting line	5	155	108	94	73	59	31	14	7		
(4)	Collim. exch. : Disconnection	4	129	90	78	61	49	25	12	6		
(4)	Cleaning of flanges	2	62	43	37	29	23	12	6	3		
(4)	Install. of new collim.	5	155	108	94	73	59	31	14	7		
(4)	Connection	2×12	739	515	448	347	280	146	67	34		
(3)	Starting the pumping	5	51	34	27	21	16	8	4	2		
(3)	Pumping follow-up	5	51	34	27	21	16	8	4	2		
(3)	Leak detection	10	102	69	55	43	33	17	7	5		
(3)	Beak out follow-up	10	102	69	55	43	33	17	7	5		
(3)	Disconnection of equipment	15	151	102	81	63	49	25	11	7		
(1)	Transportation of material	4×5	120	84	39	21	15	9	3	3		
	Sum		2520	1732	1386	1058	834	433	194	110		

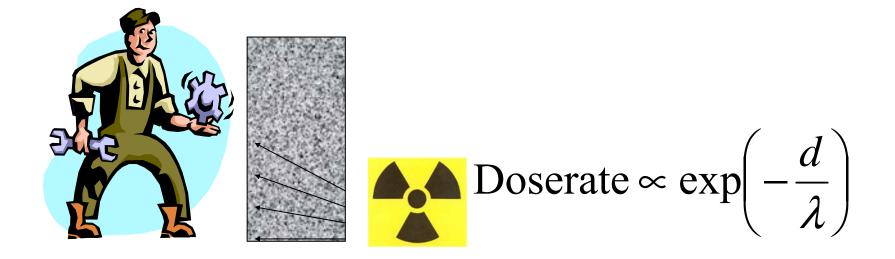

Collaborative effort between operators and radiation protection personnel

5.7.2006

Reduce time spent close to sources of ionising radiation


Dose ∞t

5.7.2006

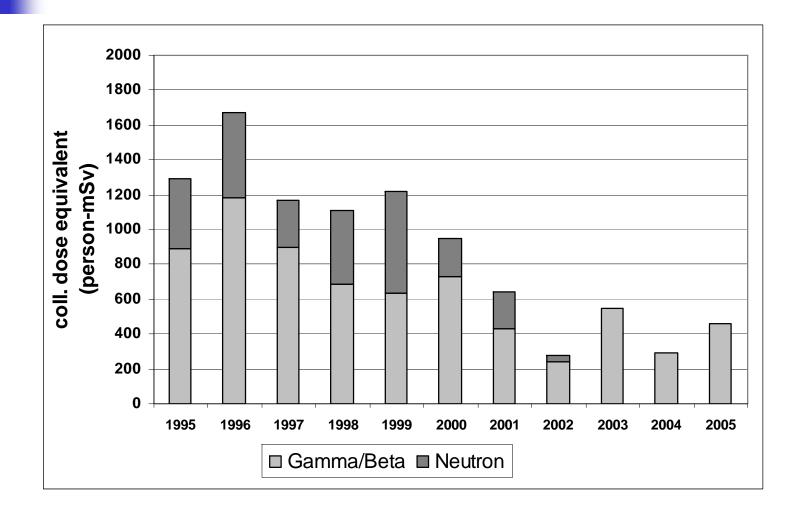

Increase your distance to sources of ionising radiation

Shielding attenuates radiation

- Before the intervention:
 - Ambient dosimetry, input value for the dose estimates
- During the intervention:
 - Operational personal dosimetry, on-line followup of the workers' dose uptake
- After the intervention:
 - 'Legal' personal dosimetry, assure that legal limits have been respected

Operational Dosimeter
"Legal" Dosimeter

LCD dose display Dose rate indication ("bip-bip") Alarm function



High accuracy and reliability

Approved

Exposition of personnel

5.7.2006

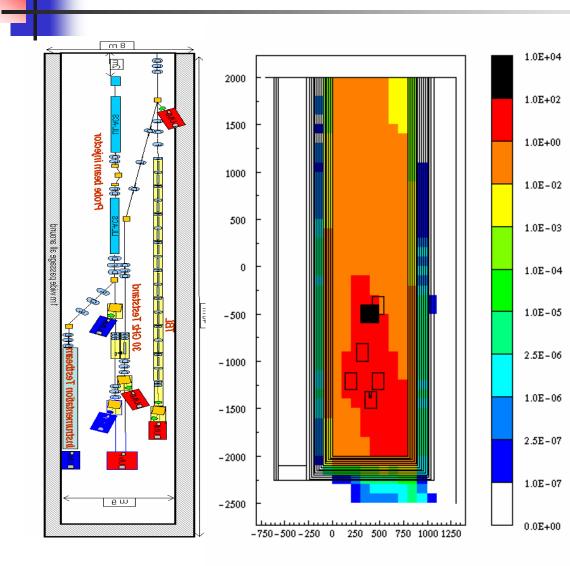
Dose Breakdown

In 2005: 4666 persons monitored

CERN StaffUsersContractors147718741315															
CERN StaffUsersContractors147718741315													81.00		
1477 1874 1315						4.94					a 16 s				
1477 1874 1315															
1477 1874 1315															
1477 1874 1315															
1477 1874 1315															
14// 18/4 1315	4 1 7														
	6 Des eeus 660 200 200 200 200 200 20	10 1000 100 100 100 100 100 100 100								Con Call Street of	있는 전문				

Dose interval (mSv)	Persons 2003	Persons 2004	Persons 2005
Total	5646	5788	4666
0.0	4495	5200	3074
0.1-0.9	899	522	1522
1.0-6.0	86	66	70
6.0 -10	4	0	0

5.7.2006

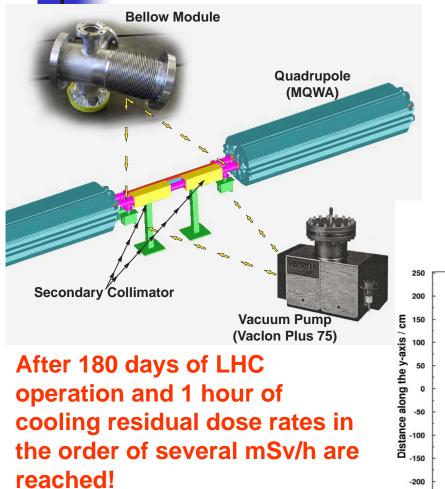


Simulation of radiation transport

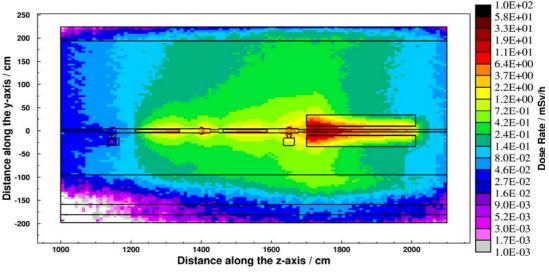
- Design of shielding
- Estimation of activation
- Development of monitors
- In the last decade, a few Monte-Carlo radiation transport programs covering the particles and energies occuring at particle accelerators have become available and can be executed on standard PCs
- Use of this method permits better understanding and significant economies compared to older approaches

Accelerator shielding

Beam loss in an accelerator building.

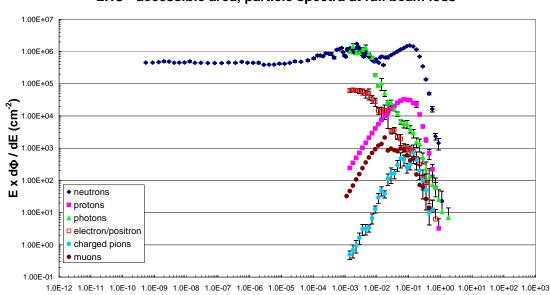

5% of total beam intensity leads to dose rates in excess of 1 Sv/h

Correctly dimensioned shielding wall of building protects areas outside.


5.7.2006

Doserate from activation

A detailed geometry was implemented in the FLUKA simulations (magnets, collimators, pumps, flanges,...)


5.7.2006

Dosimetry of prompt radiation

- Ambient (Area) Dosimeters are usually optimised for the use in nuclear industry
- Example: Ar-filled ionisation chamber as γ -monitor

Energy (GeV)

LHC - accessible area, particle spectra at full beam loss

In an accelerator-generated radiation filed, the chamber will also respond to charged particles and high-energy neutrons, both absent in nuclear industry.

CERN

Radiation Protection is an interdisciplinary professional field

It is not an "exact" science

Summary

- Scientists have their natural place, e.g. in radiation dosimetry, radiation biology or computer simulation methods
- Decisions in radiation protection are based on many factors: science & engineering, legal dispositions, economical considerations

- Radiation Protection at CERN is not a oneman show, but the combined effort of many persons.
- In this spirit, thank you to all my past and present colleagues in the Radiation
 Protection Group from whom I used material in this introduction, in particular
 - Markus Brugger, Hans Menzel, Graham Stevenson, Chris Theis, Helmut Vincke

- CH: Swiss Ordinance on Radiological Protection 814.501 of 22 June 1994, State of 19 December 2000.
- F: <u>Code du travail</u>, articles <u>L. 231-1 et L. 231-7-1</u> et articles <u>R.231-73 à R.231-113</u>.
- EU: Council Directive 96/29/Euratom of 13 May 1996 laying down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation, Official journal No. L159, 29/06/1996 pp 1–114.
- <u>http://safety-commission.web.cern.ch/safety-commission/SC-site/sc_pages/sc_rp.htm</u>
- <u>http://www.bag.admin.ch/themen/strahlung/index.html?lang=en</u>
- <u>http://www.asn.gouv.fr/</u>
- <u>http://www.hpa.org.uk/radiation/</u>
- <u>http://www.umich.edu/~radinfo/</u>
- <u>http://www.nrc.gov/what-we-do/radiation.html</u>