CERN Summer Student Lectures 2006 DETECTORS

Olav Ullaland, PH Department, CERN.

with all my excases to Enli Bilal (b. 7/10/1951, Yugoslavia)

These lectures in DETECTORS are based upon (and from time to time directly lifted from):

John D. Jackson Classical Electrodynamics
Dan Green The Physics of Particle Detectors
Fabio Sauli Principles of Operation of Multiwire Proportional and Drift Chambers
Richard Wigmans Calorimetry
Christian Joram Particle Detectors
Lectures for Postgraduates Students, CERN 1998
CERN Summer Student lectures 2003
C. Joram et al. Particle detectors : principles and techniques
Academic Training Lectures, CERN 2005
H.P. Wellisch Physics of shower simulation at LHC.
Academic Training Lectures, CERN 2004

R. Gilmore and
G. P. Heath

Particle Interactions University of Bristol
http://wwwteach.phy.bris.ac.uk/Level3/phys30800/CourseMaterials/
http://wwwteach.phy.bris.ac.uk/Level3/phys30800/CourseMaterials/p308_slides_part2.ppt
A good many plots and pictures from
http://pdg.web.cern.ch/pdg/
http://www.britannica.com/
Other references are given whenever appropriate.

Disclaimer
Help from (former) friends is gratefully acknowledged.

Erich Albrecht, Tito Bellunato, Ariella Cattai, Carmelo D'Ambrosio, Martyn Davenport, Marcella Diemoz Thierry Gys, Christian Joram Wolfgang Klempt, Stefan Koestner Martin Laub, Georg Lenzen, Dietrich Liko, Niko Neufeld, Gianluca Aglieri Rinella, Dietrich Schinzel and
Ken Wyllie
O. QClaland/2006

To do a HEP experiment, one needs:

and a Nobel prize

We will just concentrate on the detectors

What I will try to cover:

- Particle interaction with matter and magnetic fields
- Tracking detectors
- Calorimeters
- Particle Identification
and some introduction to what it is all about.

$$
E^{2}=\vec{p}^{2} c^{2}+m_{0}^{2} c^{4}
$$

energy E :
momentum p :
mass m_{0} :
measured in eV measured in eV / c measured in $\mathrm{eV} / \mathrm{c}^{2}$

$$
\begin{aligned}
& \beta=\frac{v}{c} \quad(0 \leq \beta<1) \quad \gamma=\frac{1}{\sqrt{1-\beta^{2}}} \quad(1 \leq \gamma<\infty) \\
& E=m_{0} 火^{2} \quad p=m_{0} \gamma \beta c \quad \beta=\frac{p c}{E}
\end{aligned}
$$

1 eV is a small energy.

$$
\begin{aligned}
& 1 \mathrm{eV}=1.6 \cdot 10^{-19} \mathrm{~J} \\
& m_{\text {bee }}=1 \mathrm{~g}=5.8 \cdot 10^{32} \mathrm{eV} / \mathrm{c}^{2} \\
& v_{\text {bee }}=1 \mathrm{~m} / \mathrm{s} \rightarrow E_{\text {bee }}=10^{-3} \mathrm{~J}=6.25 \cdot 10^{15} \mathrm{eV} \\
& E_{\mathrm{LHC}}=14 \cdot 10^{12} \mathrm{eV}
\end{aligned}
$$

However,
LHC has a total stored beam energy
10^{14} protons $\times 14 \cdot 10^{12} \mathrm{eV} \cong 10^{8} \mathrm{~J}$
or, if you like
One 100 T truck at $100 \mathrm{~km} / \mathrm{h}$

Cross section σ or the differential cross section $\mathrm{d} \sigma / \mathrm{d} \Omega$ is an expression of the probability of interactions.

Beam spot area A_{1}

$$
\Phi_{1}=N_{1} / t
$$

The interaction rate, R_{int}, is then given as:

$$
\begin{aligned}
R_{\mathrm{int}} \propto & \frac{N_{1} N_{2}}{A \cdot t} \\
& =\sigma \downharpoonright
\end{aligned}
$$

$$
\sigma \text { has the }
$$

dimension area.

$$
1 \text { barn }=10^{-24} \mathrm{~cm}^{2}
$$

The luminosity, \mathcal{L}, is given in $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$

$$
\begin{aligned}
& N_{\text {scat }}(\Theta, \Phi) \propto N_{\text {inc }} n_{A} d \Omega \\
& =\frac{d \sigma}{d \Omega(\Theta, \Phi)} N_{i n c} n_{A} d \Omega
\end{aligned}
$$

Interactions

Of other more basic units, I will (try) to keep to definitions as given in the REVIEW OF PARTICLE PHYSICS, Particle Data Group
like:

Atomic Number
 Z

Atomic Mass Number
Electron Charge Magnitude
$e \quad=1.602 \times 10^{-19} \mathrm{C}$
Permittivity
ε
Permeability μ
$\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
$\mu_{0}=12.566 \times 10^{-7} N^{*} / \mathrm{A}^{2} \equiv 4 \pi \times 10^{-7}$ henry/metre
N^{*} denotes Neumann's integral for two linear circuits each carrying the current I.

I will, from time to time when talking about pressure, use older units like torr mmHg or mbar and not the normal pascal $=\mathrm{N} / \mathrm{m}^{2}$ when showing original measurements.

I might even oscillate between K and ${ }^{\circ} \mathrm{C}$.

O. Qelahana/2006

We can then start off \qquad

Claus Grupen, Particle Detectors, Cambridge University Press, Cambridge 1996 (455 pp. ISBN 0-521-55216-8)

Pythagoras (ca. 590-500 B.C.) invented the doctrine that the deep structure of reality resides in mathematical relations.

Nasir al-Din al-Tusi's rendering (in A.D. 1258) of Euclid's (325-265 B.C.) proof of the Pythagorean Theorem.

I will be less mathematical, there will be some, but I will mainly work with plots.

2006
 Summer Student Lectures Detectors

Particle interaction with matter and fields.

General (and nearly self evident) Statements
\rightarrow Any device that is to detect a particle must interact with it in some way.
\rightarrow If the particle is to pass through essentially undeviated,
this interaction must be a soft electromagnetic one.

Reconstructed hadronic interactions in the material of the DELPHI detector, used for the determination of the correction factor for the VD track efficiency.
Left: Rz view; Right: Radial projection.
Physics Letters B, Volume 475, Issues 3-4, 2 March 2000, Pages 429-447
O. 2CPaRand/2006

To see the invisible:

Flux of particles
Cloud Chamber

+ Magnet

O. QClalana/2006

Cloud Chamber design

C.T.R. Wilson described the new chamber in a paper to the Royal Society in 1912.

http://www.phy.cam.ac.uk/camphy/index.htm and
http://www.bizarrelabs.com/cloud2.htm for easy steps to build one in the kitchen
A valve can be opened to connect the bulb with the air beneath the plunger.

The Photoelectric Effect

Über einen die Erzeugung und Verwanlung des Lichtes betreffenden heuristischen Gesisichtspunkt; von A. Einstein; Bern, den 18. März 1905, Annalen der Physik 17(1905): 132-148 (ref. M. Planck, Ann. d. Phys. 4, p 562. 1902)

Only by reluctantly introducing a radical new assumption into his mathematics could Planck attain the correct formula. The assumption was that the energy of the radiation does not act continuously, as one would expect for waves, but exerts itself in equal discontinuous parcels, or "quanta," of energy. In essence Planck had discovered the quantum structure of electromagnetic radiation. But Planck himself did not see it that way; he saw the new assumption merely as a mathematical trick to obtain the right answer. Its significance remained for him a mystery.

Encouraged by his brief but successful application of statistical mechanics to radiation in 1904, in 1905 Einstein attempted to resolve the duality of atoms and waves by demonstrating that part of Planck's formula can arise only from the hypothesis that electromagnetic radiation behaves as if it actually consists of individual "quanta" of energy. The continuous waves of Maxwell's equations, which had been confirmed experimentally, could be considered only averages over myriads of tiny light quanta, essentially "atoms" of light. At first Einstein believed that the light-quantum hypothesis was merely "heuristic": light behaved only as if it consisted of discontinuous quanta. But in a brilliant series of subsequent papers in 1906 and 1907, Einstein used his statistical mechanics to demonstrate that when light interacts with matter, Planck's entire formula can arise only from the existence of light quanta-not from waves.

From this, the following equation results:

$$
E_{\text {kinetic }}=h f-W
$$

$E_{\text {kinetic }}$
h
f

W
maximal kinetic energy of an emitted electron
Planck constant ($6.626 \times 10^{-34} \mathrm{Js}$)
frequency
work function

David Cassidy, Einstein and Our World http://www.physics.nwu.edu/new335/PDF/planck.pdf O. 9 Chaland/2006

http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html/

O. Weraland/2006

Knight Bachelor in 1958

Bethe-Bloch, energy loss $\mathrm{dE} / \mathrm{d} x$ and tracking detectors.

Mean excitation energies (divided by Z)
as adopted by the ICRU [9] ${ }^{\star}$. Those based on experimental measurements are shown by symbols with error flags; the interpolated values are simply joined. The grey point is for liquid H_{2}; the black point at 19.2 eV is for H_{2} gas. The open circles show more recent determinations by Bichsel [11]. The dotted curve is from the approximate formula of Barkas [12] used in early editions of this Review.

Until now: $\quad \frac{d E}{d x} \propto \frac{\ln \left(\beta^{2}\right)}{\beta^{2}}$

the Rutherford formula becomes inaccurate.
Simplest modifications give Mott formula.

and as

$$
-\frac{d E}{d x} \propto \int_{\varepsilon_{c u t}}^{\varepsilon_{\max }} \mathcal{E} \frac{d \sigma}{d \varepsilon} d \varepsilon
$$

has now to be solved for
a) close interactions
the electrons are free
b) distant interactions
the electrons are not free

$$
-\left(\frac{d E}{d x}\right)_{\text {close }} \propto \frac{1}{\beta^{2}}\left[\ln \left(\frac{\varepsilon_{\max }}{\varepsilon_{\text {cut }}}\right)-\beta^{2}\right] \quad \text { for close interactions }
$$

$$
\left.-\left(\frac{d E}{d x}\right)_{\text {distant }} \propto \frac{1}{\beta^{2}}\left[\ln \left(\frac{2(\beta \gamma)^{2} m_{e} \varepsilon_{\text {cut }}}{I^{2}}\right)-\beta^{2}-\delta\right)\right]
$$

The δ term models the density effect, the polarization of the medium.

For all the missing steps:
see J.D. Jackson, Classical Electrodynamics, Section 13 or equivalent
O. Qelalana/2006

Stopping power ($\equiv\langle\mathrm{dE} / \mathrm{dx}\rangle$) for positive muons in copper as a function of $\beta \gamma=p / M c$ over nine orders of magnitude in momentum (12 orders of magnitude in kinetic energy). Solid curves indicate the total stopping power.

Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon, aluminium, iron, tin, and lead.

Distribution of $\log _{10}(\mathrm{~d} E / \mathrm{d} x)$ as a function of $\log _{10}(p)$ for electrons, pions, kaons and (anti-)protons. The units of $\mathrm{d} E / \mathrm{d} x$ and momentum (p) are $\mathrm{keV} / \mathrm{cm}$ and GeV / c, respectively. The colour bands denote within $\pm 1 \sigma$ the $\mathrm{d} E / \mathrm{d} x$ resolution.
$I 70$ means Bichsel's prediction for 30% truncated $\mathrm{d} E / \mathrm{d} x$ mean.
the STAR experiment

$\mathrm{d} E / \mathrm{d} x$ in the TPC vs. particle momentum (p) without (upper panel) and with (lower panel) TOFr velocity cut of $|1 / \beta-1|<0.03$.

Poor man's approach:
Integrating $d E / d X$ from Rutherford scattering and ignoring the slowly changing $\ln ($ term $)$.

$$
\text { Range }=R \approx \frac{\text { Const }}{Z_{1}^{2} m_{1}^{2}} E_{\text {Kinetic }}^{2}
$$

Range is approximately proportional to the kinetic energy square at low energy and approximately proportional to the kinetic energy at high energy where the $d E / d X$ is about constant.

Electrons (and positrons) are different as they are light.

Fractional energy loss per radiation length in lead as a function of electron or positron energy.
http://pdg.lbl.gov/2004/reviews/passagerpp.pdf
O. Qelalana/2006

Define X_{0} as the Radiative Mean Path.
$X_{0}:$ Radiation Length $\frac{1}{X_{0}} \equiv \frac{1}{E} \frac{d E}{\rho d x}$

$$
\left.\frac{1}{X_{0}}=\frac{16}{3} N_{0} Z^{2} \alpha(\alpha \lambda)^{2}[\ln 0)\right] \frac{Z^{2}}{A} \Rightarrow X_{0} \propto \frac{A}{Z^{2}}
$$

apart from a (nice) definition, what exactly is \qquad
$1 X_{0}$ is the distance over which an electron/positron looses
63.2% of it energy in Bremsstrahlung.
The energy loss probability across a path length x

Pick up again
the Multiple Scattering

$$
\left\langle\Theta_{M S}^{2}\right\rangle=N_{\text {scatterings }} *\left\langle\Theta^{2}\right\rangle
$$

and (if you have no magnet) you can use it for measuring momentum

O. 2 Ceraland/2006

Primary and secondary ion pair production given at atmospheric pressure and for minimum ionizing particles.

$$
N_{\text {total }} / \mathrm{cm} \cong 5 \cdot Z
$$

Gedanken experiment.
(this time leave the cat outside the box!)
Let a charged particle pass through a gas volume.

or, about $100 e^{-} / \mathrm{cm}$ in argon gas

$$
=1.610^{-17} \mathrm{C}
$$

O. QClalana/2006

That was all planned for this lecture

Some words on δ-electrons and other fluctuations.

In the ionization, the ejected electron will have a kinetic energy: $0 \leq T \leq T_{\text {max }}$

A δ-ray with kinetic energy T_{e} and corresponding momentum p_{e} is produced at an angle Θ given by

$$
\cos \Theta=\frac{T_{e}}{p_{e}} \frac{p_{\max }}{T_{\max }}
$$

where $p_{\max }$ is the momentum of an electron with the maximum possible energy transfer $T_{\text {max }}$.
This (knock-on) electron can therefore have enough energy to ionize (far) away from the primary track.

Knock on:
$\mathrm{K}^{-}+\mathrm{p} \rightarrow \mathrm{K}^{-}+\mathrm{p}$
p slow
high ionisation

Some more words on δ-electrons and other fluctuations.
This leads to large fluctuations in the measurement of the deposited energy: Landau/Vavilov fluctuations.
(Normally) approximated by:

$$
f(\lambda)=\sqrt{\frac{e^{-\left(\lambda+e^{-\lambda}\right)}}{2 \pi}}
$$

$0 \quad 10$
20
30
40
50
60
70
Energy Loss (A.U.)

My First \qquad

Cathode:

A metallic cylinder of radius R Anode:

A gold plated tungsten wire of radius r_{0}
$r_{0} \quad=10 \mu \mathrm{~m}$
R / r_{0}
$=1000$

From field to ionisation
Approximate computed curves showing the percentage of electron energy going to various actions at a given $\mathrm{X} / \mathrm{p}(\mathrm{V} / \mathrm{cm} / \mathrm{mmHg})$

Elastic: loss to elastic impact
Excitation: excitation of electron levels, leading to light emission and metastable states
Ionization: ionization by direct impact
Kinetic: average kinetic energy divided by their "temperature" Vibration: energy going to excitation of vibrational levels

100
X/P

1000
O. Qcelahana/2006

From ionisation to gas amplification.

Let $1 / \alpha$ be the mean free path between each ionization

$$
\alpha=\alpha(E, \text { density, gas type })
$$

temperature, pressure

$$
E=E(r)
$$

The gas amplification, M, is then given by $\quad M=e^{\int_{11}^{\prime 2} \alpha(r) d r}$
Korff's approximation:

$$
\alpha=p \times A e^{-\frac{B p}{E}}
$$

Where A and B are gas dependent constants and p is the pressure.

From Korff's approximation to gas amplification.

$$
\left.\frac{E}{V_{0}}=\frac{1}{r} \frac{1}{\ln \left(\frac{R}{r}\right)}\right\} \underset{\downarrow}{\square=e^{\int_{11}^{\prime 2} \alpha(r) d r}} \Rightarrow M=\exp \left[\frac{A}{B} \frac{V_{0}}{\left.\ln \frac{R}{r_{0}} e^{-\frac{B p r_{0} \ln \frac{R}{r_{0}}}{V_{0}}}\right]}\right]
$$

O. Qelahana/2006

Drift of electrons

under the action of the electric field.

The drift velocity of the positive ions
under the action of the electric field is linear with the reduced electric field up to very high fields.
$v^{+ \text {ions }}=\mu^{+ \text {ions }} \times E$ where $\mu^{+} \propto 1 / p$ and diffusion $D^{\text {+ions }} \propto T \times \mu^{+ \text {ions }}$

	Ions	Mobility $\mathrm{cm}^{2} / \mathrm{V} / \mathrm{sec}$
Ar	$\mathrm{iC}_{4} \mathrm{H}_{10^{+}}$	1.56
Ar	$\mathrm{CH}_{4}+$	1.87
Ar	$\mathrm{CO}_{2}+$	1.72
$\mathrm{CC}_{4} \mathrm{H}_{10}$	$\mathrm{iC}_{4} \mathrm{H}_{10^{+}}$	0.61
CH_{4}	$\mathrm{CH}_{4}{ }^{+}$	2.26
CO_{2}	$\mathrm{CO}_{2}{ }^{+}$	1.09

Cloud track picture of a single electron avalanche

Different stages in the gas amplification process next to the anode wire.

Formation of Current and Charges in an Ionization Chamber

Ionizing track
W.J. Willis, V. Radeka; NIM 120(1974)221

From movement of charges to signals.

Signal induced by (mainly) the positive ions moving in a high electric field. Assume that all charges are created a distance λ from the anode.
$V_{\text {electron }}^{\text {signal }}=-\frac{Q}{l C V_{0}} \int_{r_{0}}^{r_{0}+\lambda} \frac{d V}{d r} d r=-\frac{Q}{2 \pi \varepsilon_{0} l} \ln \frac{r_{0}+\lambda}{r_{0}}$
$V_{\text {ion }}^{\text {signal }}=+\frac{Q}{l C V_{0}} \int_{r_{0}+\lambda}^{R} \frac{d V}{d r} d r=+\frac{Q}{2 \pi \varepsilon_{0} l} \ln \frac{R}{r_{0}+\lambda}$
(lC is the total capacitance)
λ is of the order of a few $\mu \mathrm{m} \rightarrow V_{\text {electron }}=V_{\text {ion }} / 100$

The basic fact in a wire proportional chamber is that if a negative pulse is obtained on a wire by the development of an avalanche, then positive pulses are obtained simultaneously on the neighboring wires.
from
G. Charpak, EVOLUTION OF THE AUTOMATIC SPARK CHAMBERS, ANNUAL REVIEW OF NUCLEAR SCIENCE, Vol. 20, 1970

CHARPAK

b_{1}

Operation of proportional chambers.

More or less any gas can be used.

$$
M=e^{\int_{x_{1}}^{x} \alpha(x) d x}
$$

The Penning effect.
The action of excited states in ionizing atoms of lower ionizing potentials is an example of inelastic impacts of second class.
The metastable states are responsible for the effect.

Kruithoff and Penning's data
O. URPRAnd/2006
a brief excursion to a Life in an Excited State

Nearly all gasses can be used. Noble gases.

symmetric stretch asymmetric stretch

vibrations
What the water molecule can do.

De-excitation of a noble gas is only possible via the emission of a photon.
If the photon energy is above the ionization threshold for other molecules in the set-up, new avalanches will be created.

Gas amplification and the saturation effects.

α : alpha-particle =highly ionising particle

${ }_{95}^{241} \mathrm{Am}: \quad$| 5.443 MeV |
| :--- |
| 5.486 MeV |

β : electron
\sim minimum ionising particle
cosmic ray
or radioactive source like

$$
{ }_{44}^{106} \mathrm{Ru}: 39 \mathrm{keV}
$$

O. OClalana/2006

There will also be effects due to the way the electrons are collected at the anode.

CAUTION ${ }^{2}$ ' RADIATION AREA

Other effects.
Drift velocity and diffusion of the electrons changes with the gas mixture.

A magnetic field will change the drift path of the electrons as well as the diffusion.

The electric field of the chamber will be screened by the positive ions.

The gas amplification will therefore change as the angle between the electric field and the ionizing particle changes.

Classic multi-wire proportional chamber Typical parameters:

$$
\begin{aligned}
& l: 5 \mathrm{~mm} \\
& s: 2-4 \mathrm{~mm} \\
& d: 20 \mu \mathrm{~m}
\end{aligned}
$$

Still possible to calculate by hand
(but straw tubes are easier)

cathode

$V_{s}(z) \underset{d \rightarrow 0}{\approx} \frac{2 \pi l}{s}-\ln \left\{4 \sin ^{2}\left(\frac{\pi x}{s}\right)+4 \sinh ^{2}\left(\frac{\pi y}{s}\right)\right\}$
$Q=\frac{V_{0}}{\frac{2 \pi l}{s}-2 \ln \frac{\pi d}{s}} \quad$ and $\quad E_{0}=\frac{s V_{0}}{\frac{\pi d}{2}\left[l-\frac{s}{\pi} \ln \frac{\pi d}{s}\right]}$
The positive pulses induced by the positive ions onto the neighboring wires is much greater than the negative pulses induced electrostatically. The net effect is thereby positive.

Advanced calculations of electric field, drift, diffusion and signal formation can be done with programs like Garfield. (Try first Ohm's Law.)

That is about all that is (really) needed to know about gas based tracking detectors. With these tools, we can now make:

Multi Wire Proportional Chambers MWPC
Time Projection Chambers
Time Expansion Chambers
Proportional Chambers
Thin Gap Chambers
Drift Chambers
Jet Chambers
Straw Tubs
Micro Well Chambers
Cathode Strip Chambers
Resistive Plate Chambers
Micro Strip Gas Chambers
GEM - Gas Electron Multiplier
Micromegas - Micromesh Gaseous Structure
(and some I have surely forgotten.)

There are, though, some gory details that we will have a closer look at.

CAST Micromesh gaseous detector

The operating gas is at atmospheric pressure.
$\checkmark 10^{4}$ amplification is easily achievable.
High field ratio: 100\% electron transparency.
No space charge effects due to fast collection of positive ions.

Start with Drift Chambers

Measure the arrival time on wire

$$
x=v_{d}\left(t-t_{0}\right)
$$

To be solved:

Error on first electron:
$\sigma_{1} \sim \frac{\pi}{2 \sqrt{3 \ln N}} \sigma_{L}$
$N=100 \quad \sigma_{I} \sim 0.4 \sigma_{L}$
F. Sauli, Gas filled Detectors, IEEE 2002

O. WePaRand/2006

E and B fields

$$
\vec{E} \perp \vec{B}
$$

$$
\tan \theta_{B}=\omega \tau
$$

$$
v_{B}=v_{0} \frac{1+\omega \tau}{1+\omega^{2} \tau^{2}}
$$

τ : mean collision time
$\omega=e B / m$ Larmor frequency

$$
\begin{aligned}
& v_{B}=v_{0} \\
& \sigma_{L}=\sigma_{0} \\
& \sigma_{T}=\frac{\sigma_{0}}{\sqrt{1+\omega^{2} \tau^{2}}}
\end{aligned}
$$

$\vec{E} \| \vec{B}$

Some planar drift chamber designs Optimize geometry \rightarrow constant E-field Choose drift gases with little dependence $v_{D}(E) \rightarrow$ linear space - time relation $r(t)$

W. Klempt, Detection of Particles with Wire Chambers, Bari 04

O. QClalana/2006

MAGNETIC FIELD EFFECTS:
 DISTORSIONS IN DRIFT CHAMBERS

Time Projection Chambers (TPC)

Large volume active detector. full 3-D track reconstruction
x-y from wires and segmented cathode of MWPC
z from drift time and
$d E / d x$

ALEPH

More on TPCs

Usually $B \| E$ improvement of diffusion
Drift length $\geq 1 \mathrm{~m}$
Rather (very) stringent requirement on homogeneity of E and B field Space charge by ions
"Slow" detector

$$
t_{D} \sim 10 \rightarrow 100 \mu \mathrm{~s}
$$

That was all planned for this lecture

Space charge
problem from positive ions, drifting back to medial membrane
\rightarrow gating

THIN ANODE AND CATHODE STRIPS ON AN INSULATING SUPPORT

Gas Electron Multiplier - GEM

MICROMEGAS:

Thin-gap parallel plate chamber

3ème Atelier Micromégas IPHE, Univ. Lausanne, March 9-10, 2000 by Peter Cwetanski
O. Qelalana/2006

An example on the software tools available in the understanding of the detectors:

Micromegas 3D Simulations

- Computation of field maps using 3D Finite Element Method. Software: Maxwell 3D Field Simulator ${ }^{\circledR}$ (Ansoft Corp.)
- Obtain gas transport parameters for operating gas with Monte Carlo simulation using imonte 4.5 (author: Steve Biagi).
- Input of field maps and gas parameters in detector simulation software Garfield (author: Rob Veenhof).

Connecting the dots

to find the tracks and some properties of the passing particles.

The Big Bear, Ursa Major, is the third largest constellation in the skies, seen at northern sky in evening of spring. The constellation has no first magnitude stars, but the Big Dipper that forms the bear's tail is a rough guide on the clarity of the evening's sky. Though Ursa Major contains no bright celestial objects, it has plenty of galaxies in outer space.

Location: Ooizumi vil., Yamanashi prefecture, Honshu

One or several wires will be set depending on the particle orientation with respect to the chamber plane.

Let s be the wire spacing.
The position of the impact point on the plane of wires is then given with a precision of about:

$$
\sigma(x) \cong \frac{s}{\sqrt{12}}
$$

The theoretical lower limit is:

if we assume that a particle next to a wire will only set this wire and a particle passing between two wires will set these wires.

Further reading in
R. Frühwirth et al., Data Analysis Techniques for High-Energy Physics

Try also
A.G. Frodesen et al., probability and statistics in particle physics

The challenge with $d E / d x$ measurements:
Long tails.
Do many measurements and build a truncated mean.

$d E / d X$ measurement from the DELPHI TPC

For a uniform magnetic field along the particle trajectory

$$
p \cong 0.3 q \frac{\int B_{\perp} d l}{\Theta} \cong 0.3 q B\left(\frac{C^{2} \sin \alpha}{8 S}+\frac{S \sin \alpha}{2}\right)
$$

where α is the angle between the trajectory and $B . B$ in tesla, p in $\mathrm{GeV} / c, q$ in electron charge, C, S and R in m and α and Θ in rad.

We can clearly also measure the charge, q, of the particle.
O. Qelalana/2006

Rectangular bending magnet. The initial and final

The central momentum is given as $p(\mathrm{GeV} / c) \approx 310^{-3} M(\mathrm{~g}) / i(\mathrm{~A})$

D* (excited D-meson, carrying the "charm" quantum number): production and decay during a wide band exposure in experiment WA21, in the BEBC liquid hydrogen bubble chamber.

Generic tracking issues.
Secondary vertices.
High spatial resolution.

2006
Summer Student Lectures Detectors

Solid State Detectors Scintillators
 and
 Photon Detectors

The Nuclear Spectroscopic Telescope Array (NuSTAR), which will take a telescope for focusing high-energy x rays into space and above the atmospheric interference. NuSTAR will fly 525 kilometres above Earth's surface and stay in orbit for 3 years. It will be the first hard x-ray focusing telescope in space and will observe energies from 10 to about 100 kiloelectronvolts, providing a 1,000-fold increase in sensitivity over previous missions.

The Nuclear Spectroscopic Telescope Array (artist's conception shown here) would be the first satellite mission with a high-energy x-ray focusing telescope in space and would provide a 1,000 -fold increase in sensitivity over previous missions.

In metal one band is only partially filed.
In a semiconductor, the valence band is (nearly) filled and the conduction band is (nearly) empty.

O. OCPaRand/2006

Excitation of a semi conductor

Effect
Auger effect: an electron from a higher shell to a vacant electronic state and ejecting an electron from the same higher shell.

Try to make a detector

Temperature (K) D.A. Fraser, The Physics of Senicendiuftegdevices

http://phys.educ.ksu.edu/ for Visual Quantum Mechanics

Electron Configuration for Si:

K 2

L 8
M $4+4$ by bonding $\rightarrow 8$ group

$$
E_{g} \approx 1 \mathrm{eV}
$$

Doping of semiconductors.
$\frac{n \text {-Type }}{\text { P, As, Sb }}$
5 electrons in the M-shell $\rightarrow 1$ electron with binding energy $10-50 \mathrm{meV}$
p-Type
B, Al, Ga
3 electrons in the M-shell
$\rightarrow 1$ electron missing

A p-n junction without bias:

- Peak electric field at the boundary between the p and the n.
- Clear depletion layer.
D. A. Fraser, The physics of semiconductor devices
O. Weraland/2006

Silicon Detector

(principle sketch)

O. WePaRand/2006

Pixel detector bump bonded to a read-out chip

F.Riggi, ST-INFN-CERN Workshop, 23-24 October 2002
O. WePaRand/2006
K_{0} and Lambda reconstruction

Reconstructed B decays

The beginning was:

EASY NEXT STEP
 Bradaschia, C ; Budinich, M ; Fidecaro, F ; Foà, L ; Focardi, E ; Giazotto, A ;
Giorgi, M A ;Givoletti, M ; Marrocchesi, P S ; Menzione, A ; Passuello, D ; Quaglia, M ; Ristori, L ; Rolandi, L ; Salvadori, P ; Scribano, A ; Stanga, R M ; Stefanini, A ; Vincelli, M L ; IFUP-TH-80-2.
and the prophesy of what will come (and hit you):

TESLA

DEPFET features

Thin ($<50 \mu \mathrm{~m}, ~ 0.11 \% \mathrm{X}_{0}$)
Small cells ($25 \mu \mathrm{~m} \times 25 \mu \mathrm{~m}$)
Fast ($50 \mathrm{MHz} /$ line, $25 \mathrm{kHz} /$ frame $\approx 2 \mathrm{Mpix} /$ module)
Low power (< 5W/full detector)

Options CCD MAPS HAPS DEPFET

U. `UXKatand/2006

Some places to look for additional information:
\qquad http://home.cern.ch/~caccia
MAPS http://ireswww.in2p3.fr/ires/recherche/capteurs/index.html http://www.te.rl.ac.uk/med
CCD http://hep.ph.liv.ac.uk/~green/lcfi/home.html
DEPFET http://atlas.physik.uni-bonn.de/

Vertex detectors web page for the Linear Electron-Positron Collider project

http://sbgat252.in2p3.fr/ires/recherche/capteurs/ECFA_vertex/
P. Jarron, Microelectronics and Nanoelectronics:

Trends and Applications to HEP Instrumentation
http://agenda.cern.ch/fullAgenda.php?ida=a036647

http://www.bicron.com.

Scintillation

Light Collection

Photon Detection

The most common inorganic scintillator is sodium iodide activated with a trace amount of thallium [$\mathrm{NaI}(\mathrm{Tl})]$.

Energy bands in impurity activated crystal

Conduction Band

Valence Band

Wavelength (nm)

Strong dependence of the light output and the decay time with temperature.

* Bismuth germinate $\mathrm{Bi}_{4} \mathrm{Ge}_{3} \mathrm{O}_{12}$ is the crystalline form of an inorganic oxide
with cubic eulytine** structure, colourless, transparent, and insoluble in water.
** From the Greek eulitos = "easily liquefiable", in allusion to its low melting point.

Also here one finds 2 time constants: from a few ns to $1 \mu \mathrm{~s}$.

Scintillator composition	Density ($\mathrm{g} / \mathrm{cm}^{3}$)	Index of refraction	Wavelength of max.Em. (nm)	Decay time Constant ($\mu \mathrm{s}$)	Scinti Pulse height ${ }^{1)}$	Notes
$\mathrm{NaI}(\mathrm{Tl})$	3.67	1.9	410	0.25	100	2)
Csl	4.51	1.8	310	0.01	6	3)
CsI(TI)	4.51	1.8	565	1.0	45	3)
$\mathrm{CaF}_{2}(\mathrm{Eu})$	3.19	1.4	435	0.9	50	
BaF_{2}	4.88	1.5	$\begin{gathered} \hline 190 / 220 \\ 310 \end{gathered}$	$\begin{gathered} 0,0006 \\ 0.63 \end{gathered}$	$\begin{gathered} 5 \\ 15 \end{gathered}$	
BGO	7.13	2.2	480	0.30	10	
CdWO_{4}	7.90	2.3	540	5.0	40	
PbWO_{4}	8.28	2.1	440	0.020	0.1	
CeF_{3}	6.16	1.7	$\begin{aligned} & 300 \\ & 340 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.020 \end{aligned}$	5	
GSO	6.71	1.9	430	0.060	40	
LSO	7	1.8	420	0.040	75	
YAP	5.50	1.9	370	0.030	70	

1) Relative to $\mathrm{NaI}(\mathrm{TI})$ in \%; 2) Hygroscopic; 3) Water soluble

That was all planned for this lecture

Organic Scintillators

Benzene $\mathrm{C}_{6} \mathrm{H}_{6}$

a little bit of chemistry:

Single Bond = sigma Bond

WHEN DO THEY PASS OUT THE GASOLINE?

1

Double Bond = one sigma + one pi Bond

Many of the properties of organic molecules such as benzene can be attributed to molecular orbitals which are delocalized over the entire molecule and lead to increased stability of the molecule.

If we have atoms with parallel p atomic orbitals, we get more kinds of pi modes by adding and subtracting them.

There are 6 pi electrons in benzene. These electrons fill 3 bonding pi molecular orbitals

In addition, combining the carbon p orbitals, gives 3 antibonding molecular orbitals.

The pi electrons form the basis for the scintillation mechanism. They are quantized in a series of singlets $S_{i j}$ and triplets $T_{i j}$

Pi electron energy levels

O. Wellaland/2006

+ large concentration of primary fluor

| | $A_{\text {Solvent }}$ | + smaller concentration of secondary fluor |
| :--- | :---: | :---: | :---: |
| $S_{3 A}$ | $+\ldots .$. | |

Main types of photon detectors:

- gas-based
- vacuum-based
- solid-state
- hybrid

The photoelectric effect

3-step process:

- absorbed γ 's impart energy to electrons (e) in the material;
- energized e's diffuse through the material, losing part of their energy;
- e's reaching the surface with sufficient excess energy escape from it;
\Rightarrow ideal photo-cathode (PC) must absorb all γ 's and emit all created e's

QE's of typical photo-cathodes

Bialkali: SbKCs, SbRbCs Multialkali: $\mathrm{SbNa}_{2} \mathrm{KCs}$ (alkali metals have low work function)

S-20 (Sb-Na-K-Cs) tri-alkaline photo cathode with quartz window.

Dynodes

Photon-to-Electron Converting Photo-Cathode
Dynodes with secondary electron emission
Typical gain $\approx 10^{6}$. Transient time spread $\approx 200 \mathrm{ps}$
\qquad
Approximately the same as the Photo Electric Effect.
\qquad On electron impact, energy is transferred directly to the electrons in the secondary electron emission material allowing a number of secondary electrons to escape. Since the conducting electrons in metals hinder this escape, insulators and semiconductors are used.

Equipotential lines

Materials in common use are:
$\mathrm{Ag} / \mathrm{Mg}, \mathrm{Cu} / \mathrm{Be}$ and $\mathrm{Cs} / \mathrm{Sb}$.
Use has also been made of negative affinity materials as dynodes, in particular GaP.

O. WePaRand/2006

Gain fluctuations of PMT's

- Mainly determined by the fluctuations of the number $m(\delta)$ of secondary e's emitted from the dynodes;
- Poisson distribution:

$$
P_{\delta}(m)=\frac{\delta^{m} e^{-\delta}}{m!}
$$

- Standard deviation:

$$
\frac{\sigma_{m}}{\delta}=\frac{\sqrt{\delta}}{\delta}=\frac{1}{\sqrt{\delta}}
$$

\Rightarrow fluctuations dominated by $1^{\text {st }}$ dynode gain;

Eenergy
$\mathrm{GaP}(\mathrm{Cs})$ dynodes $\mathrm{E}_{\mathrm{A}}<0$

Pulse height

The Micro Channel Plate (MCP)

Physical principles of Hybrid Photo Detector
silicon sensor

Take one
Photo Multiplier Tube

Remove dynodes and anode

Add

Silicon Sensor

~ 4-5000 electron-hole pairs \rightarrow Good energy resolution
O. Qrealand/2006

But...

- Electronic noise, typically of the order of $\geq 500 e$

$$
\sigma_{\text {total }}^{2}=\sigma_{\text {int. }}^{2}+\sigma_{E_{\text {loss }}}^{2}+\sigma_{\text {elec. }}^{2} \gg \sigma_{\text {int }}^{2}
$$

- Back scattering of electrons from Si surface 20% of the electrons deposit only a fraction $0 \leq \varepsilon<1$ of their initial energy in the Si sensor .
\rightarrow continuous background (low energy side)

And we should now be ready to look at

Cherenkov radiation and Transition radiation

O. QClalana/2006

Particle Identification

Cherenkov Radiation
Transition Radiation
Time-of-Flight

The density effect in the energy loss is intimately connected to the coherent response of a medium to the passage of a relativistic particle that causes the emission of Cherenkov radiation.

The same, but let us consider how a charged particle interacts with the medium

Conservation of energy and momentum

$$
\omega=\vec{\beta} \cdot \vec{k}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
\text { If: } \\
\omega \ll \gamma m=E \\
k \ll \beta \gamma m=p
\end{array}\right.} \\
& {\left[\begin{array}{l}
\text { then: } \\
\cos \Theta=\frac{1}{\beta \sqrt{\varepsilon}}
\end{array}\right.}
\end{aligned}
$$

O. 2CRaRand/2006

The

Cherenkov radiation condition:

and

$$
\begin{array}{r}
0 \leq \cos (\Theta) \leq 1 \\
\cos \Theta_{C}=\frac{1}{\beta \cdot n}
\end{array}
$$

where n is the refractive index

Some words on refractive index

The normal way to express n is as a power series.
For a simple gas, a simple
one pole Sellmeier approximation:

A practical example

$$
\left.\begin{array}{l}
\cos \theta=\frac{1}{\beta n} \\
m=\frac{p}{\beta \gamma}
\end{array}\right\}
$$

$$
\rightarrow\left\{\begin{array}{l}
\theta_{\max }=41.4^{\circ} \\
\beta_{\min }=0.75
\end{array}\right.
$$

$$
\Delta p / p^{2} \quad 5 * 10^{-4}
$$

$$
\begin{array}{ll}
\Delta \theta & 15 \mathrm{mrad} \\
l & 1 \mathrm{~cm}
\end{array}
$$

Threshold Cherenkov Detector

To get a wider momentum range for particle identification, use more than one radiator.

Assume

$$
\begin{aligned}
& n-1=\frac{A}{\lambda_{0}^{-2}-\lambda^{-2}} \\
& \frac{d N_{p h}}{d L d E}=\frac{\alpha Z^{2}}{\hbar c} \sin ^{2} \Theta \\
& \cos \Theta=\frac{1}{\beta n}
\end{aligned}
$$

Use all available information about the Cherenkov radiation:
The existence of a threshold
\qquad The dependence of the number of photons The dependence of Cherenkov angle on the velocity $\beta=p / E$ of the particle
\qquad The dependence on the charge of the particle

Capability to do single photon detection
\qquad with high efficiency
\qquad with high space resolution

LHCb RICH 2

Particle Identification with the

DELPHI TPC
and
RICHes

From data:
p from Λ
K from $\Phi \mathrm{D}^{*}$
π from K ${ }^{0}$

DELPHI particle ID

More beautiful pictures
(which has next to nothing to do with) Cherenkov radiation

O. Qelalana/2006

and while we are at β-measurement
Time-of-Flight (TOF) measurement

what can be achieved by Combined Methods

NA49, CERN-EP/99-001

O. Welalana/2006

That was all
planned for this lecture

What is
Transition Radiation ?

If $\varepsilon<1$ no real photon can be emitted for an infinite long radiator. Due to diffraction broadening, sub-threshold emission of real photons in thin radiators.
This is transition radiation.
It is emitted when a charged particle passes suddenly from one medium to another.
after "some missing" steps:
We will just take for granted, that if $\omega \gg \omega_{0}$ then:

$$
\begin{array}{r}
\frac{d^{2} S_{0}}{d \Theta d \omega}=\frac{2 \alpha \hbar \Theta^{3}}{\pi \omega}\left[\frac{1}{a_{1}}-\frac{1}{a_{2}}\right]^{2} \\
a_{i}=\frac{1}{\gamma^{2}}+\Theta^{2}+\frac{\omega_{i}^{2}}{\omega^{2}}
\end{array}
$$

For all the missing steps:
see J.D. Jackson, Classical Electrodynamics, Section 13 or equivalent

Direction and magnitude of the radiated power

Total radiated power $S \approx 10^{-2} \gamma(\mathrm{eV})$
\rightarrow which is a small number
and if $\omega_{\mathrm{p} 2}>\omega_{\mathrm{p} 1}$ then $\Theta_{\max } \approx \gamma^{-1}$
\rightarrow which is also a small number

Periodic radiator for Transition Radiation.

a good place to start:
Egorytchev, V ; Saveliev, V V ;Monte Carlo simulation of transition radiation and electron identification for HERA-B ITEP-99-11. - Moscow : ITEP, 17 May 1999.

Some ++ and some -- in the detection of Transition Radiation.

\{Total Radiated Power\} $\propto \gamma$

Transition radiation detectors are (normally) used for e to π separation
O. WePaRand/2006

and just an example of one who pick up the challenge

The small box selects a part of a pion track from the $K_{s}{ }^{0}$ decay and of an electron track from a J / ψ decay, shown in an enlarged frame.

NIM A 474 (2001) 172-187

O. OCPaland/2006

A little summary about Particle Identification

Pion-Kaon separation for different PID methods.
The length of the detectors needed for 3σ separation.

\qquad Measurement of energy flow Measurement of neutral particle

Electromagnetic Calorimeters

\qquad Hadronic Calorimeters \qquad

Bunsen's ice calorimeter

Crystal Ball @ SPEAR - Stanford

The first crystal calorimeter pioneering most of the features of modern barrel calorimeters

- $672+60 \mathrm{NaI}(\mathrm{Tl})$ crystals
- PM read out
- $\quad \mathrm{E}_{\gamma}$ range $0.1 \rightarrow 1 \mathrm{GeV}$
- energy resolution:
3.5\% @ 300 MeV
2.6\% @ 1 GeV
- solid angle: 93\% over 4π

From M. Diemoz, Torino 3-02-05

Simulated two-photon mass distribution for SM Higgs and expected background in the CMS PbWO4 crystal calorimeter for an integrated luminosity of $10^{5} \mathrm{pb}^{-1}$, with detailed simulation of calorimeter response.

The growth and the decay of a shower is a tremendously complex statistical process where several physical mechanisms participate.

The net result is however that the initiating particle is expanded in ionization and ultimately in heat.
The temperature gradient and the shock wave accompanying is measurable.

Electron shower in lead. 7500 gauss in cloud chamber. CALTECH

आिए	5 GeV
	10
	20
	30
	40

Hadron showers

F.E. Taylor et al., IEEE NS 27(1980)30
O. 2 Ceraland/2006

We will only look at some (very) basic processes.

For (more) interested people, look in:
\qquad J.P. Wellisch, Physics of shower simulation at LHC, at the example of GEANT4.
\qquad M. Diemoz, Calorimetri elettromagnetici a cristalli per la fisica delle alte energie.
and then try
http://www.gsr.unito.it/trasparenze2005.html
\qquad Richard Wigmans, Calorimetry, Energy Measurement in Particle Physics

Some questions to be asked:

"Those are interesting questions Timmy. I suggest you ask your search engine."
-What makes a signal -What reacts
-What defines the shower topologies -What processes are happening -What defines the electromagnetic content in a hadronic shower
-What is invisible energy
-How different are different calorimeters and so on
and so on \qquad

We will start off with the electromagnetic shower.

Bremsstrahlung

Bremsstrahlung is the emission of photons by a charged particle accelerated in the Coulomb field of a nucleus.

The radiative process is characterised by: Impact parameter :
b
(non-relativistic!)
Peak electric field prop. to
e / b^{2}
Characteristic frequency $\quad \omega_{c} \propto 1 / \Delta t \propto v / 2 b$

$$
\frac{d \sigma_{B}}{d \omega} \propto \frac{Z^{2}}{\omega} \rightarrow \sigma_{B} \approx 0.58 \cdot Z^{2}(m b)
$$

We now have an additional photon.

O. WePaRand/2006

Creation of an electron/positron pair in the field of an atom.

As the two diagrams are more or less identical, we would expect the cross sections to be similar.

$$
\sigma_{\text {pair }}=\frac{7}{9} \sigma_{B} \approx 0.45 \mathrm{mb} \times Z^{2}
$$

Photon total cross sections

as a function of energy in carbon and lead, showing the contributions of different processes.
$\sigma_{\mathrm{pe}}=$ Atomic photo-effect
(electron ejection, photon absorption)
$\sigma_{\text {Rayleigh }}=$ Coherent scattering
(Rayleigh scattering-atom
neither ionised nor excited)
$\sigma_{\text {Compton }}=$ Incoherent scattering
(Compton scattering off an electron)
$\kappa_{\mathrm{n}}=$ Pair production, nuclear field
$\kappa_{\mathrm{e}}=$ Pair production, electron field

Electron (positron) interaction with matter. 1000

\qquad Electromagnetic Calorimeter
Rossi B. Approximation to Shower Development.

1) Electrons loses a constant amount of energy (ε) for each radiation length, X_{0}
2) Radiation and Pair production at all energies are described by the asymptotic formulae.

You can also use EGS4, FLUKA, GEANT4 ... but they are less easy to understand immediately.

Detector Depth (X_{0})

Big European Bubble Chamber filled with $\mathrm{Ne}: \mathrm{H}_{2}=70 \%: 30 \%$, $3 T$ Field, $L=3.5 \mathrm{~m}, \mathrm{X}_{0} \approx 34 \mathrm{~cm}, 50 \mathrm{GeV}$ incident electron

EM showers: longitudinal profile

Shower parametrization

From M. Diemoz, Torino 3-02-05

EM showers: transverse profile

Transverse shower profile

- Multiple scattering make electrons move away from shower axis
- Photons with energies in the region of minimal absorption can travel far away from shower axis

Molière radius sets transverse shower size, it gives the average lateral deflection of critical energy electrons after traversing $1 \mathrm{X}_{0}$

$$
\mathrm{R}_{\mathrm{M}}=\frac{21 \mathrm{MeV}}{\mathrm{E}_{\mathrm{C}}} \mathrm{X}_{0}
$$

$$
R_{M} \propto \frac{X_{0}}{E_{C}} \propto \frac{A}{Z}(Z \gg 1)
$$

$75 \% \mathrm{E}_{0}$ within $1 \mathrm{R}_{\mathrm{M}}, 95 \%$ within $2 \mathrm{R}_{\mathrm{M}}, 99 \%$ within $3.5 \mathrm{R}_{\mathrm{M}}$

$20 \mathrm{GeV} \gamma$ in copper (simulation)

charged particles only

all particles

-9. Qelahana/2006

Hadron showers

Hadronic Showers (π, n, p, \ldots) Propagation: inelastic hadron interactions \rightarrow multi particle production Nuclear disintegration

very LARG \square

Neutrino
Weak interactions secondaries: mostly hadrons

O. Qelalana/2006

Energetic particles in a shower are close to the original axis
They define the shower core
The main part of the electromagnetic fraction
of the shower
They define the longitudinal shower shape
The energy going towards secondary proton reactions is very small in hadronic showers
(In a sampling calorimeter, most secondary protons will not reach the active media)

There is a large number of neutrons in a hadronic shower
They spend a significant amount in invisible energy
(excitation, break-up of nuclei ...)
They carry most of the transverse momentum
π^{0} 's carries a substantial fraction of the energy in a hadronic shower
They are created next to the shower core and they decay immediately, generating much of the electromagnetic content
is the average distance a high-energy hadron has to travel inside a medium before a nuclear interaction occurs.

Probability not to have interacted after a path $z \quad P=e^{-z / \lambda_{i}}$

The energy measurement of a shower is proportional to the energy deposit in the calorimeter and thereby to
the number of particles created in the shower

$$
N_{T}=\frac{E}{\mathcal{E}} X_{0}
$$

If the detector has

$$
\text { a lower energy cut-off } \quad N_{T}^{\prime}=f\left(E_{c}\right) \frac{E}{\varepsilon} X_{0}
$$

A fraction of the total energy is sampled in the active detector
Particle absorption
and

Shower sampling are separated.
tion

$$
\sum N \propto E \rightarrow \frac{\sigma(E)}{E} \geq 10 \%
$$

The total detector is
the active detector.

$$
\begin{aligned}
& N \propto E \\
& \sigma(E) \sim \text { Limited by } \\
& \text { photon statistics } \\
& \frac{\sigma(E)}{E} \approx 1-2 \% \\
& \quad \text { at } 1 \mathrm{GeV}
\end{aligned}
$$

The detector should (clearly) be transparent to photons. Crystal scintillators
(Cherenkov light also works.)

How to: \qquad limit the fluctuations in sampling calorimeters I
Landau
Geiger
Streamer
Saturated avalanche
Liquid/Solids
$\left.\left.\left.\begin{array}{c}\text { Argon Gas } 7 \mathrm{~mm} \\ \text { (proportional mode) }\end{array}\right\} \quad \frac{\sigma(E)}{E}\right]_{\text {Landau }} \cong 6 \% \Rightarrow \frac{\sigma(E)}{E}\right]_{\text {Total }} \cong 8.5 \%$
$\left.\left.\left.\left.\begin{array}{r}\text { Liquid Argon } 3 \mathrm{~mm} \\ \sim\end{array}\right) \quad \begin{array}{r}\text { times more } \\ \text { ionization }\end{array}\right\} \frac{\sigma(E)}{E}\right]_{\text {Landau }} \cong 0.4 \% \Rightarrow \frac{\sigma(E)}{E}\right]_{\text {Total }} \cong 6 \%$

The energy resolution of a calorimeter is usually parameterized with the following terms:

a	is the stochastic term
b	is the constant term
c	is the electronic noise contribution

Something of the best we can do at the moment:

Silicon Tungsten calorimeters

(if you can afford it)

The depth within the calorimeter, numbered by detector layer

* Excellent space and energy resolution! OPAL CERN-EP-99-13

Why is
an issue in calorimeters ?

Consider a π^{0} - decay

For a calorimeter with limited granularity, this would give:

$$
\begin{aligned}
& \alpha_{\min }=2 R_{M} \\
& \Rightarrow E\left(\pi^{0}\right)_{\max }=\frac{R \cdot m\left(\pi^{0}\right)}{R_{M}}
\end{aligned}
$$

That is all folks.

There is no exam.

1. Write a paragraph explaining the use of particle identification in high energy experiments.

A GAS MASK, A SMOKE GRENADE, AND A HELICOPTER ... THATS ALL I ASK.

Thank you for listening

 and for your questions.back-ups

The lateral spread of the shower is mainly governed by the multiple scattering of the electrons.

Define the Molière Unit:

$$
R_{\mathrm{M}}=(\text { Characteristic Energy }) \times(\text { Radiation Length }) /(\text { Critical Energy })
$$

$=21 \mathrm{MeV} \times X_{0} / \varepsilon \propto A / Z\left(\mathrm{~g} \mathrm{~cm}^{-2}\right)$

$$
\left.\begin{array}{l}
X_{0} \propto \frac{A}{Z^{2}} \\
E_{c}=\varepsilon \propto Z^{-0.9}
\end{array}\right\}
$$

95% of the shower is contained inside a cone with radius $2 R_{\mathrm{M}}$

Electromagnetic Shower propagated by γ

Photodiodes:

- P(I)N type:
- p layer very thin ($<1 \mathrm{~mm}$), as visible light is rapidly absorbed by silicon;
- High QE (80\% @ $\lambda \approx \mathbf{7 0 0 n m}$);

Generic tracking issues.
Secondary vertices.
High spatial resolution.

not shown
and what is a Resistive Plate Chamber (RPC)?

I. Crotty et al, Nucl. Instr. and Meth. A337(1994)370
not shown

TRANSITION AVALANCHE TO STREAMER

(b)
 Horizontal scale $20 \mathrm{~ns} / \mathrm{square}$
Vertieal scale $20 \mathrm{mV} / \mathrm{square}$

NORMAL AVALANCHE

STREAMER

RPC RATE CAPABILITY: AVALANCHE VS STREAMER OPERATION

not shown

RPC RATE CAPABILITY: DEPENDS ON GAIN AND ELECTRODES RESISTIVITY

PROPORTIONAL (AVALANCHE) OPERATION:

MATERIAL

Pestov glass
($\Omega . \mathrm{cm}$)
$10^{9}-10^{10}$
Phenolic (Bakelite)
$10^{10}-10^{11}$
Cellulose
Borosilicate glass
Melamine10^{13}

This detector can't be built (without lots of work)

Breidenbach, M;

$$
\text { Stanford, CA : SLAC, } 30 \text { Aug } 2002 \text {. - } 4 \text { p }
$$

Abstract

Most of us believe that $e^{+} e^{-}$detectors are technically trivial compared to those for hadron colliders and that detectors for linear colliders are extraordinarily trivial. The cross sections are tiny; there are approximately no radiation issues (compared to real machines) and for linear colliders, the situation is even simpler. The crossing rate is miniscule, so that hardware triggers are not needed, the DAQ is very simple, and the data processing requirements are quite modest. The challenges arise from the emphasis on precision measurements within reasonable cost constraints.

to find the tracks and some properties of the passing particles.

Solution:
A

Guess:
B
and what really happened

Cherenkov Radiation

 and other shocking waves.

Shock Waves May Confuse $\frac{1 / 9}{1}$ Birds' Internal Compass-SDNIC JET (beLTA

http://www.newscientist.com/lastword/answers/lwa674bubbles.html http://www.pbs.org/wgbh/nova/barrier/

