Astroparticle Physics (3/3)

Nathalie PALANQUE-DELABROUILLE CEA-Saclay

CERN Summer Student Lectures, August 2006

- 1) What is Astroparticle Physics ? Big Bang Nucleosynthesis Cosmic Microwave Background
- 2) Dark matter, dark energy

High energy astrophysics
 Cosmic rays
 Gamma rays
 Neutrino astronomy

Astroparticle Physics (3/3)

Nathalie PALANQUE-DELABROUILLE CEA-Saclay

CERN Summer Student Lectures, August 2004

- 1) What is Astroparticle Physics ? Big Bang Nucleosynthesis Cosmic Microwave Background
- 2) Dark matter, dark energy
- 3) High energy astrophysics Cosmic rays Gamma rays Neutrino astronomy

Acceleration mechanisms

1949 : Fermi acceleration

Stochastic acceleration of particles

on magnetic inhomogeneities

Head-on collisions \Rightarrow Energy gain Tail-end collisions \Rightarrow Energy loss On average, head-on more probable \Rightarrow Energy gain over many collisions

 $\Delta E/E \alpha \beta^2 \qquad \beta = v/c \sim 10^{-4}$

Slow and inefficient

" Second order "

First order Fermi acceleration

<u>1970's : First order Fermi acceleration</u> Acceleration in strong shock waves

Conservation of nb of particles : $\rho_1 v_1 = \rho_2 v_2$ Strong shock : $\rho_2/\rho_1 = (\gamma+1)/(\gamma-1)$ Fully ionized plasma (\Leftrightarrow ideal gas) $\gamma = 5/3$ and $v_1/v_2 = 4$

⇒ Rapid gain in energy as particles repeatedly cross shock front

 $\Delta E/E \propto \beta$ (~10⁻¹) and E⁻² spectrum

" First order "

Powerful shocks? Supernovae !

Supernova

High mass star

(too short) life and (extremely violent) death of massive stars

1 SN II / 50 years in our galaxy

Low mass star

Crab supernova remnant

HESS : first confirmation

HESS : gamma-ray color map (E > 100 GeV)

ASCA : X-ray contours (E ~ 1 keV)

> Excellent overlap → confirmation of SN remnants as particle accelerators

ROSAT : radio contours

Cosmic ray detectors

Counting particles: AGASA

Air fluorescence: Fly's Eye

Spherical mirrors viewed by PMT's at the focal plane

Dual setup allows accurate trajectory reconstruction

Amount of light (with 1/r² correction for geometry) → shower profile

- \rightarrow shower maximum X_{max}
- → primary energy

Can only operate on clear and moonless nights

> 13 km apart in Utah desert

Ultra High Energy Cosmic Rays

GZK (Greisen Zatsepin Kuzmin) CUT-OFF

$$\mathbf{p} + \gamma_{CMB} \rightarrow \Delta^{+} \overset{\mathbf{p}}{\prec} \mathbf{n} + \pi^{0}$$

When process energetically allowed (>5×10¹⁹ eV), space becomes opaque to CR

Sources with $E > E_{GZK}$ must be at d<100 Mpc (local cluster)

(no known acceleration sites...)

AUGER

Air fluorescence + ground arrays 2 sites (Argentina, USA): 1600 detectors + 4 telescopes, 3000 km²

Auger South

- 3 fluorescence stations (out of 4)

Aalargüe

- 60% of ground detectors
- E_{max} = 86 EeV (one at 140 EeV but not selected by cuts)

Auger North?

- improved statistics (local supercluster)
- test of isotropy

So far, neither confirms nor excludes past-GZK evts

Lecture outline

- 1) What is Astroparticle Physics ? Big Bang Nucleosynthesis Cosmic Microwave Background
- 2) Dark matter, dark energy
- 3) High energy astrophysics Cosmic rays Gamma rays Neutrino astronomy

17

Gamma ray astronomy

Cosmic accelerators	\rightarrow high energy protons (cosmic rays)
	deviated by B up to 10 ¹⁸ eV
	→ high energy photons (gamma rays)
	point back to source!

- 1952 Prediction of HE gamma-ray emission of Galactic disk
- 1958 First detection of cosmic gamma rays (solar flare)
- 1967 First exhaustive review devoted to gamma-ray astronomy
- 1968 Detection of Galactic disk and Crab nebula

EGRET (E > 100 MeV)

Galactic <u>diffuse interstellar</u> <u>emission</u> from interaction with cosmic rays

Point sources

- Jets from active galactic nuclei
- Galactic sources in star-forming sites : pulsars, binaries, supernova remnants ...
- Unidentified sources (170/270)

Active Galactic Nuclei

AGN : galaxy with 10⁸ - 10⁹ M_o central black hole
10% - radio jets (relativistic ejection of plasma)
1% - blazars (all EGRET AGNs !)

Blazars

Low energy emission (X-ray) : Synchrotron emission of e⁻ in jet

<u>High energy emission</u> (γ-ray):
self-compton (electro-magnetic) ?
π⁰ decay (hadronic) ?

Quasars and Microquasars

QUASAR 3C 223

MICROQUASAR 1E1740.7-2942

24

Gamma ray bursts (GRB)

- 1967 Chance discovery of prompt emission by VELA (16 events), published in 1973
- 1991 Observation with the satellites C.G.R.O (EGRET, BATSE...) & BeppoSAX

brightest objects in the universe, emitting mostly at high E
→ emission collimated ?
wide variety of time profiles, ∆t from 10ms to 1000s
→ compact region, Lorentz boost (Γ ~100)

2005 (>2000 bursts) still very poorly understood ...

Burst location

Dec. 16.5

Dec. 15.5

Lecture outline

- 1) What is Astroparticle Physics ? Big Bang Nucleosynthesis Cosmic Microwave Background
- 2) Dark matter, dark energy
- 3) High energy astrophysics Cosmic rays Gamma rays Neutrino astronomy

acceleration processes

High energy sources

- High energy emission (y-ray):
 - self-compton (classica-magnetic) ?
 - π^0 decay (hadronic) ?

High energy v sources

Experimental challenge

Large volume

Good shielding

Low fluxes @ high E Low cross-sections High background (atmospheric μ)

 $\mathbf{v} \rightarrow \boldsymbol{\mu} \rightarrow Cerenkov light$

Detectors

Strings with optical modules (PMT in glass sphere)

• d _{om-om} :	E threshold
・# of OM:	E resolution
• d _{string-string} :	effective volume, E limit

HE neutrino experiments

Science reach

Status & future of v astronomy

ANTARES, AMANDA: 0,1 km2 arrays Allow assessment of under-ice, under-water v telescopes Possible observation of diffuse neutrino fluxes (from AGN) (current limits from AMANDA reaching predictions from some models) No point sources so far

Actual v astronomy (point sources) requires 1 km³

IceCube: 80 1-km long strings over ~1 km² January 2006: 6 lines deployed

KM3: design study in FP6 through network KM3Net Joint study from ANTARES, NESTOR, NEMO

Conclusions

Cosmic Ray physics Existence or not of post GZK cut-off events ? Gamma Ray physics Study of high energy sources (AGNs, blazars) GRB mystery Indirect dark matter searches

Neutrino physics Complementary to photon astrophysics (models confrontations) Indirect dark matter searches