Neutron Background Studies at CMS

N. SRIMANOBHAS, P. ARCE,T. COX
LCG Physics Validation for LHC Simulations,
CERN, September 202006

Redone the neutron background by using full CMS simulation (OSCAR) and Geant4 (Standalone) instead of Geant3.

For Geant3 study,
http://ptc.home.cern.ch/ptc/down/nbgnd.html
For full CMS simulation and G4 standalone studies, http://agenda.cern.ch/askArchive.php? base=agenda\&categ=a05||42\&id=a05||42s|t0\%2Ftransparencies\% 2FNeutronBackground_LCG.pd
http://ptc.home.cern.ch/ptc/down/presents/050618_n_bgnd.pdf

Geant3

We have run the full CMS simulation (OSCAR) and Geant4 (standalone with simple geometry) to count the number of neutron interactions in the sensitive gas.

CSC Gas			RPC Gas		
Ar40	22.96%	Ar40	1.76	$\%$	
CI2	16.31%	CI2	25.89	$\%$	
		CI35	3.12	$\%$	
FI9	29.87%	FI9	1.67	$\%$	
OI6	30.87%	OI6	67.56	$\%$	

```
Neutron energies
Vary from I.E-4 - I.E-3 MeV (G4)
Events
2K for OSCAR, IOK for G4
Physics
CMS:QGSP_BERT_HP I.0 with G4.7.I
Geant4 (Standalone):
    QGSP_HP 3.0 (G4.7.I.pOI)
    QGSP_BERT_HP 2.0 (G4.8.0.pOI)
    QGSP_BERT_HP 2.I (G4.8.I.pOI)
G4NDL 3.7 
```


Surrounded by CSCs
Geometry use with G4 standalone

Geant4 (OSCAR)

2k events, QGSP_BERT_HP, Muon endcap detectors

This results (in endcap) looks like the results from Geant3 study.

2 k events, QGSP_BERT_HP, RPC muon chamber

Compare with ENDF data

$$
{ }^{1} n_{0}+{ }^{35} C l_{17} \rightarrow{ }^{1} p_{1}+{ }^{35} S_{16}
$$

CI-35 (N ,P) S-35

$$
{ }^{1} n_{0}+{ }^{19} F_{9} \rightarrow{ }^{1} n_{0}+{ }^{19} F_{9} \quad \text { (+gamma) }
$$

ENDF-Relational v-1.e

The problem should come from material cross sections, shouldn't come from CMS geometry (alignment of muon station).
We tested by changing material at muon station.

Run with Linux SLC3, gcc 3.2.3

Compare results between OSCAR \& Geant4 (standalone)

F19[0.0]

S35[0.0]

Compare F19(n,inel)F19 Cross-Sections with G4 results Compare $\mathrm{Cl} 35(\mathrm{n}, \mathrm{p}) \mathrm{S} 35$ Cross-Sections with $\mathbf{G} 4$ results

15

S35[0.0]
From summary 21-06-2006

$\begin{aligned} & \text { FI9 } \\ & \text { S35 } \end{aligned}$	LINUX (gcc 3.2.3)					
	3.7		3.8		3.9	
	$\begin{aligned} & \text { RPC } \\ & \text { CSC } \end{aligned}$	$\begin{aligned} & \text { pure } \\ & \text { CSC } \end{aligned}$	$\begin{aligned} & \text { RPC } \\ & \text { CSC } \end{aligned}$	pure CSC	$\begin{aligned} & \text { RPC } \\ & \text { CSC } \end{aligned}$	pure CSC
$\begin{aligned} & \text { 4.7.1 } \\ & \text {.p01 } \end{aligned}$	$\left\|\begin{array}{c} 51935 \\ 2431 \end{array}\right\|$	$\begin{gathered} 34 \\ 0 \end{gathered}$	$\begin{gathered} 26 \\ 0 \end{gathered}$	$\begin{gathered} 34 \\ 0 \end{gathered}$	$\begin{gathered} 26 \\ 0 \end{gathered}$	$\begin{gathered} 34 \\ 0 \end{gathered}$
$\begin{aligned} & \text { 4.8.0 } \\ & \text {.pO } \end{aligned}$	$\left.\begin{array}{\|c\|} 52904 \\ 2452 \end{array} \right\rvert\,$	$\begin{gathered} 38 \\ 0 \end{gathered}$	$\begin{gathered} 30 \\ 0 \end{gathered}$	$\begin{gathered} 38 \\ 0 \end{gathered}$	$\begin{gathered} 30 \\ 0 \end{gathered}$	$\begin{gathered} 38 \\ 0 \end{gathered}$
4.8.1	-	-	-	-	-	-
$\begin{aligned} & \text { 4.8. I } \\ & \text {.p0 I } \end{aligned}$	$\begin{array}{\|c\|} 52356 \\ 2485 \end{array}$	$\begin{gathered} 64 \\ 0 \end{gathered}$	45 0	64 0	45 0	$\begin{gathered} 64 \\ 0 \end{gathered}$
QGSP_HP 2.3, QGSP_BERT_HP 2.0, QGSP_BERT_HP 2.1						

If we use G4NDL 3.8 (3.9) instead of G4NDL 3.7 we found that the number of interactions with Chlorine and Fluorine goes to almost zero.

What are the changes in G4NDL3.8 (3.9)?

Replace
Inelastic/CrossSection/I7_nat_Chlorine source: CI-NAT (neutron) from ENDF/B-VI Tape IOI

The problem comes from G4NDL

The problem of G4NDL 3.7 is
"The inelastic neutron scattering cross section data for chlorine contains a NaN, leading to significant discrepancies."

From http://pcitapiww.cern.ch/asdcgi/geant4/problemreport/ show bug.cgi?id=750

With New G4NDL (3.8, 3.9), This problem had been fixed since January 2006.

Thanks Alexander HOWARD for suggestions.

$\begin{aligned} & \text { FI9 } \\ & \text { S35 } \end{aligned}$	LINUX (gcc 3.2.3)						MAC (INTEL, Xcode 2.4)					
	3.7		3.8		3.9		3.7		3.8		3.9	
	$\begin{aligned} & \text { RPC } \\ & \text { rac } \end{aligned}$	pure CSC	$\begin{aligned} & \text { RPC } \\ & \text { CSC } \end{aligned}$	pure CSC	$\begin{aligned} & \text { RPC } \\ & \text { CSC } \end{aligned}$	pure CSC	$\begin{aligned} & \text { RPC } \\ & \text { CSC } \end{aligned}$	pure CSC	$\begin{aligned} & \text { RPC } \\ & \text { CSC } \end{aligned}$	pure CSC	$\begin{aligned} & \text { RPC } \\ & \text { CSC } \end{aligned}$	pure CSC
$\begin{aligned} & \text { 4.7.1 } \\ & \text {.p0 } \end{aligned}$	$\begin{aligned} & 51935 \\ & 2431 \end{aligned}$	$\begin{gathered} 34 \\ 0 \end{gathered}$	$\begin{gathered} 26 \\ 0 \end{gathered}$	$\begin{gathered} 34 \\ 0 \end{gathered}$	$\begin{gathered} 26 \\ 0 \end{gathered}$	$\begin{gathered} 34 \\ 0 \end{gathered}$	$\begin{gathered} 29 \\ 0 \end{gathered}$	$\begin{gathered} 35 \\ 0 \end{gathered}$	$\begin{gathered} 37 \\ 0 \end{gathered}$	$\begin{gathered} 35 \\ 0 \end{gathered}$	$\begin{gathered} 37 \\ 0 \end{gathered}$	$\begin{gathered} 35 \\ 0 \end{gathered}$
$\begin{aligned} & 4.8 .0 \\ & . p 01 \end{aligned}$	$\begin{gathered} 52904 \\ 2452 \end{gathered}$	$\begin{gathered} 38 \\ 0 \end{gathered}$	$\begin{gathered} 30 \\ 0 \end{gathered}$	$\begin{gathered} 38 \\ 0 \end{gathered}$	$\begin{gathered} 30 \\ 0 \end{gathered}$	$\begin{gathered} 38 \\ 0 \end{gathered}$	$\begin{gathered} 37 \\ 0 \end{gathered}$	$\begin{gathered} 37 \\ 0 \end{gathered}$	$\begin{gathered} 22 \\ 0 \end{gathered}$	$\begin{gathered} 37 \\ 0 \end{gathered}$	$\begin{gathered} 22 \\ 0 \end{gathered}$	$\begin{gathered} 37 \\ 0 \end{gathered}$
$\begin{aligned} & \text { 4.8. I } \\ & . p 01 \end{aligned}$	$\begin{array}{\|c} 52356 \\ 2485 \end{array}$	$\begin{gathered} 64 \\ 0 \end{gathered}$	$\begin{gathered} 45 \\ 0 \end{gathered}$	$\begin{gathered} 64 \\ 0 \end{gathered}$	$\begin{gathered} 45 \\ 0 \end{gathered}$	$\begin{gathered} 64 \\ 0 \end{gathered}$	$\begin{gathered} 43 \\ 0 \end{gathered}$	$\begin{gathered} 58 \\ 0 \end{gathered}$	$\begin{gathered} 58 \\ 0 \end{gathered}$	$\begin{gathered} 58 \\ 0 \end{gathered}$	58 0	58 0

QGSP_HP 2.3, QGSP_BERT_HP 2.0, QGSP_BERT_HP 2.1
It is possible that Mac resets the NaN value of Chlorine cross-sections as zero.

Summary

I. There are strange behaviors when we used G4NDL3.7 RPC (FI9 ~2\%, CL35 ~3\%) There are too many inelastic process

$$
\begin{aligned}
& { }^{1} n_{0}+{ }^{35} \mathrm{Cl}_{17} \rightarrow{ }^{1} p_{1}+{ }^{35} S_{16} \\
& { }^{1} n_{0}+{ }^{19} F_{9} \rightarrow{ }^{1} n_{0}+{ }^{19} F_{9} \quad \text { (+gamma) }
\end{aligned}
$$

CSC (FI9 ~30\%, No CL35) Few (Elastic) interactions which give FI9 as daugther.
This problem comes from Chlorine data of G4NDL 3.7 which contains NaN data.
2. Behaviors in (I) appeared only when we used Linux. They didn't appear when we tried with Mac.
It's possible that Mac reset NaN as zero for chlorine cross-sections.
3. With G4NDL3.8 (3.9), results look reasonable. Mac and Linux gave results in the same way.

No. of hits/events (above 250 ns)
Geant 3 I.I (I000 events)
Geant4 0.82 (147 events)

