Neutron Background Studies at CMS

N. SRIMANOBHAS, P. ARCE, T. COX LCG Physics Validation for LHC Simulations, CERN, September 20 2006 Redone the neutron background by using full CMS simulation (OSCAR) and Geant4 (Standalone) instead of Geant3.

For Geant3 study, <u>http://ptc.home.cern.ch/ptc/down/nbgnd.html</u>

For full CMS simulation and G4 standalone studies, <u>http://agenda.cern.ch/askArchive.php?</u> <u>base=agenda&categ=a051142&id=a051142s1t0%2Ftransparencies%</u> <u>2FNeutronBackground_LCG.pd</u>

http://ptc.home.cern.ch/ptc/down/presents/050618_n_bgnd.pdf

We have run the full CMS simulation (OSCAR) and Geant4 (standalone with simple geometry) to count the number of neutron interactions in the sensitive gas.

CSC Gas	RPC Gas					
Ar40 22.96 % CI2 16.31 %	Ar40 1.76 % C12 25.89 %					
F19 29.87 %	Cl35 3.12 % F19 1.67 %					
016 30.87 %	016 67.56 %					

Geometry use with G4 standalone

The problem should come from material cross sections, shouldn't come from CMS geometry (alignment of muon station).

We tested by changing material at muon station.

(;700 E

- 600

500

400

300

200

100

0

200

	OSCAR 3.7.0 (2k events, QGSP_BERT_HP 1.0)									
		G4N[OL 3.7		G4NDL 3.8					
FI9	3	515 (RP	C region)	8					
S35		24	76		0					
Proton		24	82		0					
	Geant4.8.1.p01 (QGSP_BERT_HP 2.1)									
	G4N	DL 3.7 (100K ev	ents)	G4NDL 3.8 (IM events)					
	RPC 8	k CSC	pure	pure	RPC & CSC		pure	pure		
	RPC	CSC	CSC	RPC (1000 events)	RPC	CSC	CSC	RPC		
FI9	519392	718	512	288959	20	5364	5338	295		
S35	24111	2 0		365	0	2	4	2		
Proton	24427	68	98	368	18	738	861	696		

Run with Linux SLC3, gcc 3.2.3

F19 S35	LINUX (gcc 3.2.3)								
	3.	.7	3.	.8	3.9				
	RPC	pure	RPC	pure	RPC	pure			
	CSC	CSC	CSC	CSC	CSC	CSC			
4.7.1	51935	34	26	34	26	34			
.p01	2431	0	0	0	0	0			
4.8.0	52904	38	30	38	30	38			
.p01	2452	0	0	0	0	0			
4.8.1	-	-	-	-	-	-			
4.8.1	52356	64	45	64	45	64			
.p01	2485	0	0	0	0	0			

If we use G4NDL 3.8 (3.9) instead of G4NDL 3.7 we found that the number of interactions with Chlorine and Fluorine goes to almost zero.

What are the changes in G4NDL3.8 (3.9)?

Replace

nelastic/CrossSection/17_nat_Chlorine ource: CI-NAT (neutron) from ENDF/B-VI Tape 101

The problem comes from G4NDL

```
The problem of G4NDL 3.7 is
"The inelastic neutron scattering cross section
data for chlorine contains a NaN, leading to
significant discrepancies."
```

From http://pcitapiww.cern.ch/asdcgi/geant4/problemreport/ show_bug.cgi?id=750

With New G4NDL (3.8, 3.9), This problem had been fixed since January 2006.

Thanks Alexander HOWARD for suggestions.

F19 S35	LINUX (gcc 3.2.3)						MAC (INTEL, Xcode 2.4)					
	3.7		3.8		3.9		3.7		3.8		3.9	
	RPC	pure	RPC	pure	RPC	pure	RPC	pure	RPC	pure	RPC	pure
	CSC	CSC	CSC	CSC	CSC	CSC	CSC	CSC	CSC	CSC	CSC	CSC
4.7.1	51935	34	26	34	26	34	29	35	37	35	37	35
.p01	2431	0	0	0	0	0	0	0	0	0	0	0
4.8.0	52904	38	30	38	30	38	37	37	22	37	22	37
.p01	2452	0	0	0	0	0	0	0	0	0	0	0
4.8.1	52356	64	45	64	45	64	43	58	58	58	58	58
.p01	2485	0	0	0	0	0	0	0	0	0	0	0

QGSP_HP 2.3, QGSP_BERT_HP 2.0, QGSP_BERT_HP 2.1

It is possible that Mac resets the NaN value of Chlorine cross-sections as zero.

Summary

I. There are strange behaviors when we used G4NDL3.7 RPC (FI9 ~2%, CL35 ~3%) There are too many inelastic process

 ${}^{1}n_{0} + {}^{35}Cl_{17} \rightarrow {}^{1}p_{1} + {}^{35}S_{16}$

 ${}^{1}n_{0} + {}^{19}F_{9} \rightarrow {}^{1}n_{0} + {}^{19}F_{9}$ (+gamma)

CSC (F19 ~30%, No CL35) Few (Elastic) interactions which give F19 as daugther.

This problem comes from Chlorine data of G4NDL 3.7 which contains NaN data.

2. Behaviors in (1) appeared only when we used Linux. They didn't appear when we tried with Mac.

It's possible that Mac reset NaN as zero for chlorine cross-sections.

3. With G4NDL3.8 (3.9), results look reasonable. Mac and Linux gave results in the same way.

