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It IS possible to spend a lifetime
analysing data without realising that
there are two very different
approaches to statistics:

Bayesianism and Frequentism.



How can textbooks not even mention

Bayes/ Frequentism?

For simplest case (m + J) <« GGaussian
with no constraint on m(true) then

m—Kko <m(true) < m+Kko

at some probability, for both Bayes and Frequentist
(but different interpretations)
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See Bob Cousins “Why isn’t every physicist a Bayesian?” Amer Jrnl Phys 63(1995)398



We need to make a statement about
Parameters, Given Data

The basic difference between the two:

Bayesian ;. Probability (parameter, given data)
(an anathema to a Frequentist!)

Frequentist : Probability (data, given parameter)
(a likelihood function)



PROBABILITY
MATHEMATICAL

Formal

Based on Axioms

FREQUENTIST

Ratio of frequencies as n-> infinity
Repeated “identical” trials

Not applicable to single event or physical constant

BAYESIAN Degree of belief

Can be applied to single event or physical constant

(even though these have unique truth)
Varies from person to person  ***

Quantified by “fair bet”



Bayesian versus Classical

Bayesian

P(A and B) = P(A;B) x P(B) = P(B;A) x P(A)

e.g. A =event contains t quark
B = event contains W boson

or A=1]amin Switzerland
B = | am giving a lecture

Completely uncontroversial, provided....
P(A;B) = P(B;A) x P(A) /P(B) 7



P(B; A) x P(A)

Bayesian P(A;B) = Bayes
P(B) Theorem
P(hyothesis, data) o P(data;hypothesis) x P(hypothegs)
T 0 T
posterior likelihood prior
Problems: P(hyp..) true or false

“Degree of belief”
Prior What functional form?
Coverage

Goodness of fit



P(hypothesis.....) True or False
“Degree of Belief”
credible interval

Prior:  What functional form?

Uninformative prior: flat?

: : 2
In which variable? e.g. mym-,Inm,....7

Unimportant if “data overshadows prior”
Important for limits

Subjective or Objective prior?
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P (Data;Theory) # P (Theory;Data)
HIGGS SEARCH at CERN
|s data consistent with Standard Model?

or with Standard Model + Higgs”?
End of Sept 2000 Data not very consistent with S.M.

Prob (Data ; S.M.) < 1% valid frequentist statement
Turned by the press into: Prob (S.M. ; Data) < 1%
and therefore Prob (Higgs ; Data) > 99%

l.e. “lItis almost certain that the Higgs has been seen”
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Upper limit at 90Z CL, s,

llya Narsky, FNAL CLW 2000
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P (Data;Theory) % P (Theory;Data)

Theory = male or female

Data = pregnant or not pregnant

P (pregnant ; female) ~ 3%
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P (Data;Theory) % P (Theory;Data)

Theory = male or female

Data = pregnant or not pregnant

P (pregnant ; female) ~ 3%
but

P (female ; pregnant) >>>3%
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Example 1: Is coin fair ?

Toss coin: 5 consecutive tails

Whatis P(unbiased; data) ? i.e.p="%
Depends on Prior(p)

If village priest prior ~ 0(1/2)

If stranger in pub prior ~ 1 for O<p<1

(also needs cost function)

17



Example 2 : Particle Identification

Try to separate & and protons
probability (p tag;real p) = 0.95

probability ( /T tag; real p) = 0.05
probability (p tag ; real (70 = 0.10

probability ( 77 tag ; real 77) = 0.90
Particle gives proton tag. What is it?

Depends on prior = fraction of protons

f proton beam, very likely

f general secondary particles, more even

f pure T beam, ~0

18



Hunter and Dog

1) Dog d has 50%
probability of being
100 m. of Hunter h .

2) Hunter h has 50%
probability of being
within 100m of Dog
d

River x =0

River x =1 km

19



Given that: a) Dog d has 50% probability of being
100 m. of Hunter

Is it true that b) Hunter h has 50% probability of
being within 100m of Dog d ?

Additional information
e Rivers at zero & 1 km. Hunter cannot cross them.

0<h<1lkm

e Dog can swim across river - Statement a) still true

If dog at =101 m, hunter cannot be within 100m of
dog

Statement b) untrue

20
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Classical Approach

Neyman “confidence interval” avoids pdf for 4
uses only P( Xx; i)

Confidence interval H1 - U2

P( {1~ H2contains u )= & Trueforany i

Varying intervals fixed
from ensemble of
experiments

Gives range of 1 for which observed value X, was “likely” (¢¢ )
Contrast Bayes : Degree of belief = ¢ that isin U U2
22
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90% Classical interval for Gaussian
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lLll < /Ll SlLlu at 90% confidence

Frequentist

Bayesian

lLl| and /L[u known, but random
IL[ unknown, but fixed
Probability statement about L& and 24

ﬂ| and qu known, and fixed

Al unknown, and random
Probability/credible statement about IL[
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Classical Intervals

* Problems Hard to understand e.g. d’Agostini e-mail
Arbitrary choice of interval
Possibility of empty range
Over-coverage for integer observation
e.g. # of events
Nuisance parameters (systematic errors)

Widely applicable

* Advantages _
Well defined coverage
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Flip-flop

Black lines Classical 90% central interval

Red dashed: Classical 90% upper limit
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Poisson confidence intervals. Background = 3
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Importance of Ordering Rule

Neyman construction in 1 parameter #
2 measurements X1 Xz

p(X;u)=G(X-u1l)

An aside: Determination of single parameter p via ){2

===Acceptable level of Zz

Range of parameters given by
1)  Values of A for which data
is likely i.e. p(x°)is
acceptable or
2
2) 1)< Zrznin (1) +1

2) is good
2
1) Range depends on Z i

[“Confidence interval coupled to goodness of fit”] 34




" Neyman Construction

For given (U, acceptable ( X1, X2)
satisfy

Xi— 7% (- ,,)2 + (X2 — ,u)z < Ccut
Defines cylinder in (,U, X, Xz)space
Experiment gives (Xl, Xz)—) u interval

Range depends on|X: —X:

o Xlzxzi\/Z—(xl—xz)z /2

Range and goodness of fit are coupled 35




That was using Probability Ordering
Now change to Likelihood Ratio Ordering

For X+ # X2 ,no value of L{ gives very good fit

For Neyman Construction at fixed 4 , compare:

(Xl — ILI)Z + (Xz o ,Ll)2 with (Xl — ﬂbest)z + (Xz — ﬂbest)z

where b (Xl - X2)/ 2

giving Z[yz—y(xl+x = } —x+x)}

Cutting on Likelihood Ratio Ordering gives:

-+ X
ﬂ_xl 3 .




Therefore, range of H is
Constant Width

Independent of X; — X,

\
A \
N \
N \
A \
A \
> \
A \
A \
Al \
\ \
N \
N \
A \
< M » N
< » A _>
A \
\
Y7 \
.

Confidence Range and Goodness of Fit are completely decoupled
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Bayesian

Pros:

Easy to understand

Physical Interval

Cons:

Needs prior
Hard to combine

Coverage

38



Standard Frequentist

Pros:

Coverage

Ccons:

Hard to understand
Small or Empty Intervals

Different Upper Limits

39



SYSTEMATICS

N.....=0 LA+D
T T T

For example

T
Observed Physics we need to know these,
T parameter Probably from other

measurements (and/or theory)
N £+/N

ST Uncertainties =2 errorin O
for statistical errors

Some are arguably statistical errors

Shift Central Value LA=LA,t0o,
Bayesian b = by, £ o,
Frequentist

40
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Shift Nuisance Parameters

N = o LA+D

events

Simplest Method
Evaluate o, using LA, and b

Move nuisance parameters (one at a time) by
their errors 2 6o, & 00,

If nuisance parameters are uncorrelated,
combine these contributions in quadrature

41

—> total systematic



Bayesian

Without systematics p(a; N ) o p(N ; o-)H(o-)

T

prior
With systematics

p(o*, LA, b; N ) oC p(N fa A b)H(O', LA, b)

T
~ 11, )1, (LA, (b)

Then integrate over LA and b

p(o;N) =1l p(c, LA, b; N ) dLAdb

42



p(c:N )= [l p(c, LA, b; N )dLA db
If Hl(O' )= constant and HZ(LA) = truncated Gaussian TROUBLE!

Upper limit on O from IP(G;N)dU

Significance from likelihood ratio for 0=0 and O ax

43



Frequentist
Full Method

Imagine just 2 parameters O and LA

and 2 measurements N and M

T T

Physics Nuisance

Do Neyman construction in 4-D

Use observed N and M, to give T

68%
Confidence Region for LA andg A

O 44



Then project onto O axis
This results in OVERCOVERAGE

Aim to get better shaped region, by suitable
choice of ordering rule

Example: Profile likelihood ordering

45



Full frequentist method hard to apply in several
dimensions

Used in < 3 parameters

For example: Neutrino oscillations (CHOOZ)
sin” 26 , Am?
Normalisation of data

Use approximate frequentist methods that reduce
dimensions to just physics parameters

e.g. Profile pdf
.e. IOC”Eproﬁle(N;G): pdf (N’MO;G’ I-Abest)
Contrast Bayes marginalisation

Distinguish “profile  ordering”

See Giovanni Punzi, PHYSTATO05 page 88
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Talks at FNAL CONFIDENCE LIMITS WORKSHOP

(March 2000) by:

Gary Feldman
Wolfgang Rolke

hep-ph/0005187 version 2

Acceptance uncertainty worse than Background uncertainty

Limitof C. Lim.aso >0
#C.L.forc =0

Need to check Coverage

*

T

Lim

47



Method: Mixed Frequentist - Bayesian

Bayesian for nuisance parameters and

Frequentist to extract range

Philosophical/aesthetic problems?

Highland and Cousins

(Motivation was paradoxical behaviour of Poisson limit
when LA not known exactly)

48



Bayesian versus Frequentism

Bayesian Frequentist

Basis of Bayes Theorem --> Uses pdf for data,
method Posterior probability for fixed parameters

distribution
Meaning of | Degree of belief Frequentist definition
probability
Prob of Yes Anathema
parameters?
Needs prior? | Yes No
Choice of Yes Yes (except F+C)
interval?
Data Only data you have ....+ other possible
considered data
Likelihood Yes No 49

principle?




Bayesian versus Frequentism

Bavyesian

Frequentist

Ensemble of

No

Yes (but often not

experiment explicit)

Final Posterior probability Parameter values -
statement distribution Data is likely
Unphysical/ Excluded by prior Can occur

empty ranges

Systematics Integrate over prior Extend dimensionality
of frequentist
construction

Coverage Unimportant Built-in

Decision Yes (uses cost function) | Not useful

making

50




Bayesianism versus Frequentism

“‘Bayesians address the question everyone is
iInterested in, by using assumptions no-one
believes”

51



Next time : Discovery and p-values

Hope: LHC moves us from era
of “Upper Limits’ to that of

DISCOVERY



