The Higgs Completes the Standard Model

 $\lim_{E\to\infty}\mathcal{A}\propto \text{const.}$

With the inclusion of the Higgs particle, the theory remains predictive.

Theory requires a Higgs mass < 1 TeV

Phenomenology of Supersymmetry: What Your Mother Never Told You

Biggest Problem for the MSSM

We didn't see the *Higgs*. (not superpartners)

The Higgs Potential

$$\lambda |h|^4 \to \frac{g^2}{8} \left[|H_1|^2 - |H_2|^2 \right]^2 \qquad m_h = M_Z |\cos 2\beta|$$

SUSY-breaking loop required - same size as tree.

 $(m_h^2)_{tree} + \delta m_h^2 > (114 \,\text{GeV})^2$ (Big Susy-breaking in top sector)

The Higgs Potential

$$\lambda |h|^4 \to \frac{g^2}{8} \left[|H_1|^2 - |H_2|^2 \right]^2 \qquad m_h = M_Z |\cos 2\beta|$$

SUSY-breaking loop required - same size as tree.

 $(m_h^2)_{tree} + \delta m_h^2 > (114 \,\text{GeV})^2$ (Big Susy-breaking in top sector)

New tree-level contribution requires new fields:

$$W = ySH_1H_2 \rightarrow y^2 \left| H_1H_2 \right|^2$$

More Higgses

$$W = \lambda \hat{H}_u \hat{H}_d \hat{S} + \frac{\kappa}{3} \hat{S}^3$$

More Higgses

$$W = \lambda \hat{H}_u \hat{H}_d \hat{S} + \frac{\kappa}{3} \hat{S}^3$$

$$\begin{split} M_{H_d}^2 &= -\frac{\lambda^2}{2} \left(s^2 + v^2 \sin^2 \beta \right) + \frac{\lambda \kappa}{2} s^2 \tan \beta - \frac{M_Z^2}{2} \cos 2\beta + m_\lambda s \tan \beta \ , \\ M_{H_u}^2 &= -\frac{\lambda^2}{2} \left(s^2 + v^2 \cos^2 \beta \right) + \frac{\lambda \kappa s^2}{2 \tan \beta} + \frac{M_Z^2}{2} \cos 2\beta + \frac{m_\lambda s}{\tan \beta} \ , \\ M_S^2 &= -\frac{\lambda^2}{2} v^2 + \frac{\lambda \kappa}{2} v^2 \sin 2\beta - \kappa^2 s^2 + \frac{m_\lambda v^2}{2s} \sin 2\beta + m_\kappa s \ . \end{split}$$

More Higgses

$$W = \lambda \hat{H}_u \hat{H}_d \hat{S} + \frac{\kappa}{3} \hat{S}^3$$

$h_v^0, H_v^0, h_s^0 = A_v^0, A_s^0$

New Higgs Decay

$h^0 \rightarrow a^0 a^0$

And then the pseudo-scalars decay.

SM Higgs

Higgs to 4b's

But NOT 4 taus!

Fermiophobic

Non-standard Higgs Decays

New Higgs Decays

$$egin{array}{c} h
ightarrow a^0 a^0
ightarrow bar{b} bar{b} bar{b} \ h
ightarrow a^0 a^0
ightarrow au ar{ au} au ar{ au} \ h
ightarrow a^0 a^0
ightarrow 6 \pi^0 \ h
ightarrow a^0 a^0
ightarrow 6 \pi^0 \ h
ightarrow ss
ightarrow a^0 a^0 a^0 a^0 \ rightarrow bar{b} bar{b$$

 $m_h > 110 \text{ GeV}$ $m_h > 86 \text{ GeV}$ $m_h > 86 - 100 \text{ GeV}$? $m_h > 117 \text{ GeV}$ $m_h > 117 \text{ GeV}$

 $m_h > 82 \text{ GeV}???$

Higgs Decays to Superpartners

Most robust possibility:

Neutralinos (like neutrinos) are invisible.

$$\widetilde{\mathbf{N}}_{1}^{\mathbf{0}} = \widetilde{\chi}_{1}^{\mathbf{0}}$$

Ratio to SM rate

LEP Combined - '01

Extra Singlet -> Extra Neutralino

$$W = \lambda \hat{H}_u \hat{H}_d \hat{S} + \frac{\kappa}{3} \hat{S}^3$$

$$\mathbf{M}_{\widetilde{N}} = \begin{pmatrix} M_1 & 0 & -g'v_d/\sqrt{2} & g'v_u/\sqrt{2} & 0\\ 0 & M_2 & gv_d/\sqrt{2} & -gv_u/\sqrt{2} & 0\\ -g'v_d/\sqrt{2} & gv_d/\sqrt{2} & 0 & -\lambda s & -\lambda v_u\\ g'v_u/\sqrt{2} & -gv_u/\sqrt{2} & -\lambda s & 0 & -\lambda v_d\\ 0 & 0 & -\lambda v_u & -\lambda v_d & 2\kappa s \end{pmatrix}$$

Higgs to Neutralino Cascade

Missing Energy signature suppressed, e.g.

As m_a approaches m_{χ_1} , missing energy is reduced

S. Chang - Aspen Winter 2007

Generalizing This Ratio

$M_3: M_2: M_1 \simeq 7: 2: 1$

What if, for example, $M_2 > M_3 \ge M_1$?

Generalizing This Ratio

What if, for example, $M_2 > M_3 \ge M_1$?

 $Q = M_{\widetilde{g}} - M_{\widetilde{B}}$ If $Q < M_{\widetilde{B}}$

Bino carries away energy but not momentum

Take $M_{\tilde{B}} = 60 \text{ GeV}...$

Wacker, et. al.

Ratios of 'inos'

 $M_3 > M_1 > M_2$ AMSB - cascades with leptons. LL charged particle

 $M_2 > M_3 > M_1$ Only jets + missing E_T

 $M_1 > M_3 > M_2$

Jets plus missing E_T and/or LL charged particle

 $M_2 > M_1 > M_3$

Gluino may be long lived - at least 4-body decay

Violation of R Parity

 $W = H_1 Q D^c + H_2 Q U^c + H_1 L E^c + \mu H_1 H_2$ $+ L Q D^c + U^c D^c D^c + L L E^c + \mu_L L H_2$

Violation of R Parity

$W = H_1 Q D^c + H_2 Q U^c + H_1 L E^c + \mu H_1 H_2$ $+ L Q D^c + U^c D^c D^c + L L E^c + \mu_L L H_2$

Could have "Baryon Parity".

Violation of R Parity

$W = H_1 Q D^c + H_2 Q U^c + H_1 L E^c + \mu H_1 H_2$ $+ L Q D^c + U^c D^c D^c + L L E^c + \mu_L L H_2$

or "Lepton Parity"

$$p \not\to X$$

X must have an odd number of fermions, thus its lepton number L = 2n + 1. No lepton parity violation, no decay.

Typical Bounds on Superpartners with B Violation

Sleptons (R) Sneutrinos Squarks (u_{L/R},d_{L/R}) Stop Sbottom Gluino 94,85,70 GeV (A) 88,65,65 GeV (A) 87,80,86,56 GeV (L) 77 GeV (O,D,L) 7.5 (>55, <30) GeV (L) 80 GeV ? (UA2)

Only Chargino bound roughly the same (102.5 GeV)

Higgs decays with B-violation

Could be a source of new displaced vertices.

L. Carpenter, D. Kaplan, E.J. Rhee

Supersymmetry Breaking with 'Squashed' Spectrum

Deflected Anomaly Mediation

Mirage Mediation

Dirac Gauginos

DAMSB

Mirage Mediation

Supersymmetry Breaking with 'Squashed' Spectrum

Deflected Anomaly Mediation

Mirage Mediation

Dirac Gauginos vs. Majorana Gauginos

"New" Parameter Set At the Weak Scale

"New" Parameter Set At the Weak Scale

Should the world be "Natural"?

$$(m_h^{phys})^2 = M_{planck}^2 + M_{qtm\,corr}^2$$

Cancellation of one part in 10³⁴

This doesn't happen in condensed matter system unless we force it to happen.

The Cosmological Constant

Fine tuning of one part in 10^{120} !

(one part in 10⁶⁰ with SUSY)

In 1987 Weinberg suggested that if our universe was one of a large selection, we would live in one where the cosmological constant was *just small enough* to allow for structure to form, and if we don't measure one, we can rule out the anthropic principle.

The Cosmological Constant

Fine tuning of one part in 10^{120} !

(one part in 10⁶⁰ with SUSY)

In 1987 Weinberg suggested that if our universe was one of a large selection, we would live in one where the cosmological constant was *just small enough* to allow for structure to form, and if we don't measure one, we can rule out the anthropic principle.

But then we did measure one...

Environmental Selection

Environmental Selection

Split Supersymmetry 10^{16} TeV $M_{_{\mathrm{Pl}}}$ M_{susy} ? $\left\{ \begin{array}{c} 10^{15} \text{ TeV} \\ 10 \text{ TeV} \end{array} \right.$ Scalars (Squarks, sleptons, ...) Fermions $M_{\rm weak}$ $\sim 1 \text{ TeV}$ (Higgsinos, gauginos) +SM Higgs **Preserves** Unification and Dark Matter $10^{-15} { m TeV}$ $M_{\rm CC}$

Gluinos are Long-Lived

Stopped Gluinos

2 fb^{-1}	200 GeV	300 GeV	400 GeV
CDF	4.1×10^{3}	3.1×10^2	3.3×10^{1}
D0	4.5×10^3	$3.3 imes 10^2$	3.4×10^{1}
100 fb^{-1}	300 GeV	800 GeV	1300 GeV
ATLAS	5.8×10^{6}	1.8×10^{4}	6.2×10^{2}
CMS	3.7×10^6	1.2×10^4	3.9×10^2

Out of Time Decays

Even if you HATE use of the anthropic principle...

Is pointed us to a new signal to look for - very long lived stopped particles.