

The AMGA Metadata Catalog

Introduction and hands-on exercises

Nuno Santos CERN Health e-Child Tutorial CERN(Geneve), October 10th, 2006

www.eu-eela.org

- Background and Motivation for AMGA
- Interface, Architecture and Implementation
- Metadata Replication on AMGA
- Deployment Examples
- Hands-on Exercises

Metadata on the GRID

- Metadata is data about data
- On the Grid: information about files
 - Describe files
 - Locate files based on their contents
- But also simplified DB access on the Grid
 - Many Grid applications need structured data
 - Many applications require only simple schemas
 - Can be modelled as metadata
 - Main advantage: better integration with the Grid environment
 - Metadata Service is a Grid component
 - Grid security
 - Hide DB heterogeneity

- 2004 ARDA evaluated existing Metadata Services from HEP experiments
 - AMI (ATLAS), RefDB (CMS), Alien Metadata Catalogue (ALICE)
 - Similar goals, similar concepts
 - Each designed for a particular application domain
 - Reuse outside intended domain difficult
 - Several technical limitations: large answers, scalability, speed, lack of flexibility
- ARDA proposed an interface for Metadata access on the GRID
 - Based on requirements of LHC experiments
 - But generic not bound to a particular application domain
 - Designed jointly with the gLite/EGEE team
- Adopted as the official EGEE Metadata Interface

- ARDA developed an implementation of the EGEE interface
 - AMGA ARDA Metadata Grid Application
- Began as prototype to evaluate the Metadata Interface
 - Evaluated by community since the beginning:
 - LHCb and Ganga were early testers (more on this later)
 - Matured quickly thanks to users feedback
- Now part of gLite middleware
 - Official Metadata Service for EGEE
 - First release with gLite 1.5
 - Planned for inclusion on gLite 3.1 (not present on gLite 3.0)
 - Also available as standalone component
- Expanding user community
 - HEP, Biomed, UNOSAT...

Metadata Concepts

- Some Concepts
 - Metadata List of attributes associated with entries
 - Attribute key/value pair with type information
 - Type The type (int, float, string,...)
 - Name/Key The name of the attribute
 - Value Value of an entry's attribute
 - Schema A set of attributes
 - Collection A set of entries associated with a schema
 - Think of schemas as tables, attributes as columns, entries as rows

Example from gLibrary

- gLibrary is a use case developed by GILDA.
 - Attempt to create a Multimedia Management System on the Grid
 - Images, Movies, Audio Files, Office Documents
- Two collections presented below:
 - /gLibrary
 - /glAudio

Collection	/gLib				
Entry Names	Attributes				
	FileName	PathName	Туре	Submitter	
4ffaffc8-26e7-4826-b460- 3d5bf08081a4	DedicatoAte.mp3	/grid/gilda/calanducci	Audio	Tony Calanducci	
00454dca-a269-4b93-8a45- c4012af05600	ardizzonelarocca_is_231005.ppt.gp g	/grid/gilda/calanducci /EGEE	EGEEDOC	Tony Calanducci	

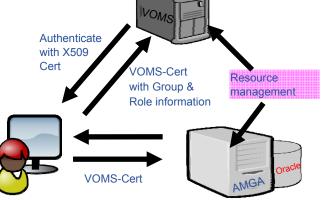
Collection	/gLAudio							
Entry names	Attributes							
	SongTitle	Duration	Album	Genre	Singer	Format		
4ffaffc8-26e7-4826- b460-3d5bf08081a4	Dedicato A Te	00:03:27	Dedicato A Te	Рор	Le Vibrazioni	МР3		

AMGA Features

- Dynamic Schemas
 - Schemas can be modified at runtime by client
 - Create, delete schemas
 - Add, remove attributes

Metadata organised as an hierarchy

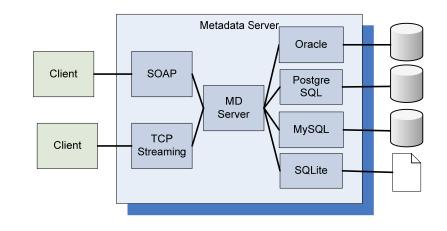
- Collections can contain sub-collections
- Analogy to file system:
 - Collection ⇔ Directory; Entry ⇔ File
- Flexible Queries
 - SQL-like query language
 - Joins between schemas
 - Example

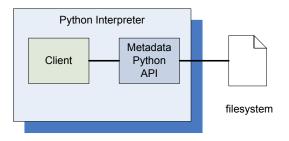

- Database systems from different vendors support different datatypes.
 - Obstacle to portability
- AMGA defines six standard datatypes
 - mapped transparently to the most appropriate type of the DB backend in use

	$\mathbf{PostgreSQL}$	MySQL	Oracle	\mathbf{SQLite}	Python
int	integer	int	number(38)	int	int
float	double precision	double precision	float	float	float
varchar(n)	character varying(n)	character varying(n)	varchar2(n)	varchar(n)	string
timestamp	timestamp w/o TZ	datetime	timestamp(6)	unsupported	time (unsupp.)
text	text	text	long	text	string
numeric(p,s)	numeric(p,s)	numeric(p,s)	numeric(p,s)	numeric(p,s)	float

- Using the above datatypes you are sure that your metadata can be easily moved to all supported back-ends
- If you do not care about DB portability, you can use, in principle, as entry attribute type ALL the datatypes supported by the back-end
 - PostgreSQL Network Address type or Geometric ones

- Enabling Grids for E-science
 - Secure connections SSL
 - Authentication based on
 - Username/password
 - General X509 certificates
 - Grid-proxy certificates
 - Authorisation:
 - Users/groups
 - Unix style permissions
 - ACLs Per-collection or per-entry
 - Access control via a Virtual Organization Management System (VOMS):

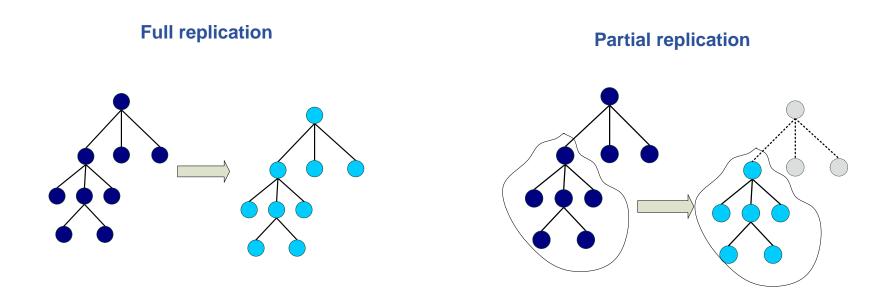



Health e-Child application tutorial, CERN October 11th, 2006

AMGA Implementation

- C++ Server
 - Runs on any Linux flavour
- Backends
 - Oracle, MySQL, PostgreSQL, SQLite
- Two frontends
 - TCP Streaming
 - High performance
 - Client API for C++, Java, Python, Perl, Ruby
 - SOAP
 - Interoperability
- Also implemented as standalone Python library
 - Data stored on filesystem

- Motivation
 - Scalability Support hundreds/thousands of concurrent users
 - Geographical distribution Hide network latency
 - Reliability No single point of failure
 - DB Independent replication Heterogeneous DB systems
 - Disconnected computing Off-line access (laptops)

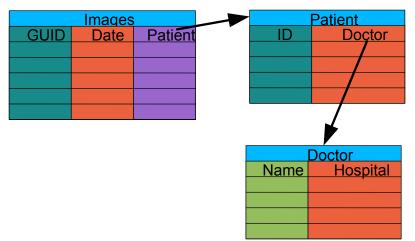

Architecture

- Asynchronous replication
- Master-slave Writes only allowed on the master
- Replication at the application level
 - Replicate Metadata commands, not SQL \rightarrow DB independence
- Partial replication supports replication of only sub-trees of the metadata hierarchy

Metadata Replication

Main use cases

FP6-2004-Infrastructures-6-SSA-026409 Health e-Child application tutorial, CERN October 11th, 2006


Early adopters of AMGA

- LHCb-bookkeeping
 - Migrated bookkeeping metadata to ARDA prototype
 - 20M entries, 15 GB
 - Large amount of static metadata
- Ganga
 - Job management system
 - Developed jointly by Atlas and LHCb
 - Uses AMGA for storing information about job status
 - Small amount of highly dynamic metadata

Biomed

- Medical Data Manager MDM
 - Store and access medical images and associated metadata on the Grid
 - Built on top of gLite 1.5 data management system
 - Demonstrated at last EGEE conference (October 05, Pisa)
- Strong security requirements
 - Patient data is sensitive
 - Data must be encrypted
 - Metadata access must be restricted to authorized users
- AMGA used as metadata server
 - Demonstrates authentication and encrypted access
 - Used as a simplified DB

- More details at
 - https://uimon.cern.ch/twiki/bin/view/EGEE/DMEncryptedStorage

Conclusion

- AMGA Metadata Service of gLite
 - Part of gLite (but still not certified in gLite 3.0. it will be done with 3.1 release)
 - Useful for simplified DB access
 - Integrated on the Grid environment (Security)
- Replication/Federation features
- Tests show good performance/scalability
- Already deployed by several Grid Applications
 - LHCb, ATLAS, Biomed, ...
 - GILDA applications gLibrary
- AMGA Web Site

http://cern.ch/amga

End of theory "Hands on" to follow...

FP6-2004-Infrastructures-6-SSA-026409

Health e-Child application tutorial, CERN October 11th, 2006

We will use the TCP Streaming Front-end

• **Programming APIs:**

- C++ API (md_cli.h, MD_Client.h)
- Java Client API and command line mdjavaclient.sh & mdjavacli.sh (also under Windows !!)
- Python Client API

Interactive access

- mdcli executes a metadata command and exits. Useful for scripts.
- mdclient interactive shell
- We will use the mdclient interactive shell

 Copy a template of config file for the MDC: \$ cp \$GLITE_LOCATION/etc/mdclient.config \$HOME/.mdclient.config

Enabling Grids for E-sciencE

- Start up the Metadata Catalog Client with \$ mdclient
- Once logged in, you can list the available commands, typing help.
 - Connected to amga.ct.infn.it:8822
 - ARDA Metadata Server 1.2.0
 - Query> help

eGee

- >> >help [topic]<
- >> >Displays help on a command or a topic.<
- >> >Valid topics are: help metadata metadata-optional directory entry group acl index schema sequence user view ticket commands<
- Commands are grouped by topic. You can get the list of valid commands for each topic, typing help [topic]
- Example: help entry

eGee

MDC directory related commands

Enabling Grids for E-science

- Browse the contents of a directory
 - dir [path]

Returns the name of all subdirectories and files in the given *path* or in the current directory if not specified

- Print the current working directory
 - pwd
- Change the current working directory
 - cd directory

Example: cd /gilda/rio

- Directory creation
 - createdir /parentdir/dir

Creates the directory *dir* if it does not yet exist but *parentdir* already does Example: createdir /gilda/rio/tcaland

- Directory removal
 - rmdir path

Removes the directory given by path

MDC: Handling attributes

- Schema population
 - addattr dir attr type
 - Adds a new attribute to the schema of a directory. Type is the name of an SQL datatype which will translated (if necessary) into a data type understood by the back end DB.
 - Examples of valid datatypes are int, float, varchar(n),

```
timestamp, text, numeric(p,s)
```

- Examples: addattr /gilda/merida/tcaland MovieTitle varchar(100) addattr /gilda/merida/tcaland Runtime int addattr /gilda/merida/tcaland PlotOutline text
- Attribute listing
 - listattr path
 - Returns a list of all attributes of the given file/direcory
- Attribute Removal
 - removeattr dir attribute
 - Removes an attribute from a directory if it is not used by any entry in the directory

MDC: managing entries

- Entry creation
 - addentry entry (attribute value)+
 - Add a new entry and initializes some attributes
 - Example: addentry /gilda/rio/tcaland/madagascar.mov MovieTitle Madagascar
- Setting attribute values
 - setattr entry (attribute value)+
 - Sets one or more attributes of an entry to given values Example: setattr /gilda/rio/tcaland/madagascar.mov Runtime 86
- Getting attribute values
 - getattr pattern (attribute)+
 - Returns the entries and all the attributes for every file matching pattern Example: getattr /gilda/rio/tcaland/*.mov Title
- Entry deletion
 - rm pattern

Removes all entries matching pattern Example: rm /gilda/rio/m*.mov

- find pattern 'query_condition'
- Returns all entries matching pattern for which query_condition is true
- Examples:
 - find /gilda/riotcaland/ 'Runtime > 80'
 - find /gilda/rio/tcaland/ 'like(MovieTitle, "Mad%")'
 - find /gilda/rio/tcaland 'like(MovieTitle, "Mad%") AND Runtime > 80'

selectattr attr... condition

Returns the values of given attributes for all files matching condition Example:

cd /gilda/rio/tcaland selectattr .:MovieTitle .:Runtime 'Runtime > 80' >> >Madagascar< >> >86<

Exercise:

- Log into the Metadata Catalog
- Create a directory with your surname into the /gilda/merida directory
- Add some attributes (Description (varchar(100), Value int, Comment text) to the directory just created
- Add some entries using as entry name the LFNs you uploaded and registered into the File Catalog during the DMS hands-on session
- Fill the attribute fields for the inserted entries.
- Look for the entry with Value > 50