

Introduction to Grid Application Development

Vangelis Floros (efloros@cern.ch) Application Support Team NCSR "Demokritos", Institute of Nuclear Physics

www.eu-egee.org

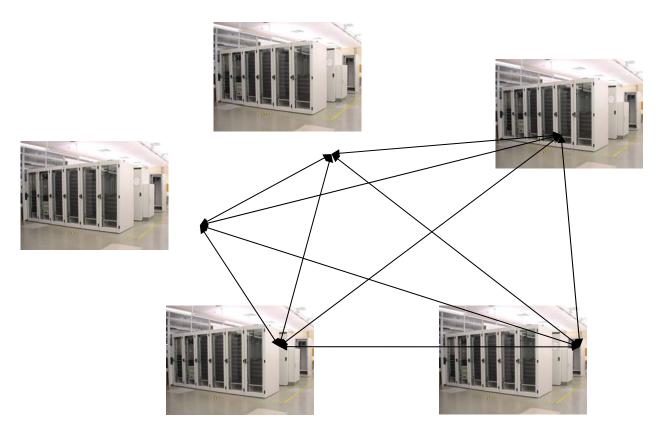
- Portion of slides (derived from those) prepared by:
 - Mike Mineter, NESC
 - Charles Loomis, LAL-Orsay
 - Roberto Barbera and his GILDA team University of Catania and INFN
 - EGEE-II NA4 Activity Member's

Contents

- Basic Concepts
- Types of Grid Applications
- Challenges
- Crash introduction to gLite services
- Working from the command line
- Introduction to the basic APIs

"Grid computing is coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations" (I.Foster)

A Virtual Organisation is:

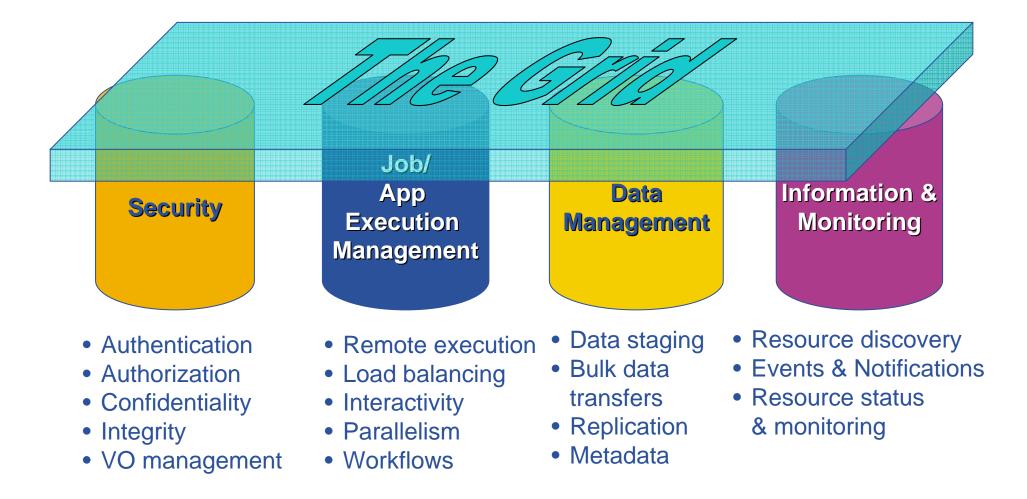

- People from different institutions working to solve a common goal
- Sharing distributed processing and data resources

Focus: Wide area, collaboration, virtual organisations

Practical definition in some areas

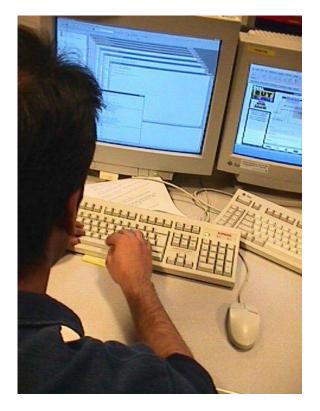
Enabling Grids for E-sciencE

Grid Computing == Clustering Clusters; Building a global batch submission system ...

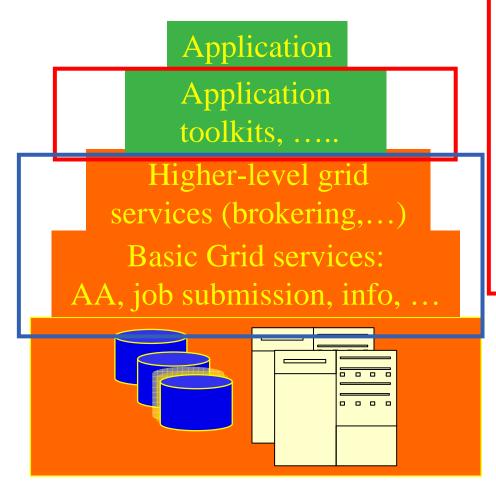

Basic Concepts

- Types of Grid Applications
- Challenges
- Crash introduction to gLite services

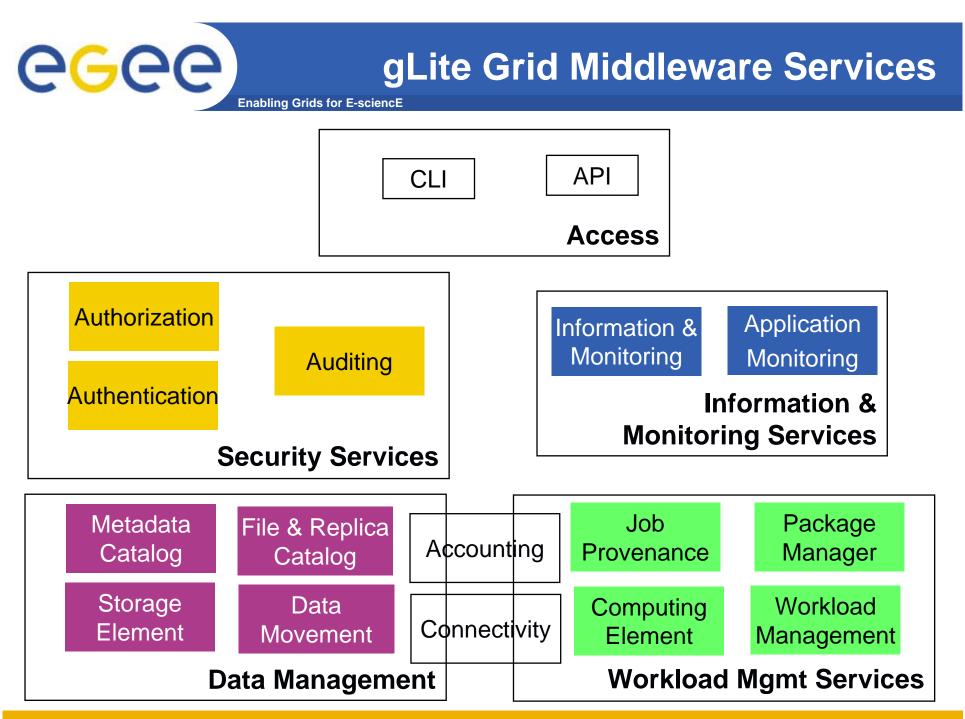
The four pillars of Grid Computing


Enabling Grids for E-sciencE

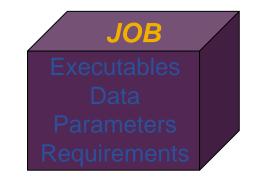
Grid Application Development


- Application development in the Grid implies the exploitation of APIs, tools and environments that provide the four basic Grid capabilities order to perform complex tasks and achieve diverse goals.
- The extend and approach that the four basic Grid concepts are materialized depends on the specific capabilities of the Grid enabling technologies (in our case the gLite middleware suite)

The vital layer


Enabling Grids for E-sciencE

Where computer science meets the application communities! **VO-specific developments built** on higher-level tools and core services Makes Grid services useable by non-specialists


Grids provide the compute and data storage resources

Production grids provide these core services.

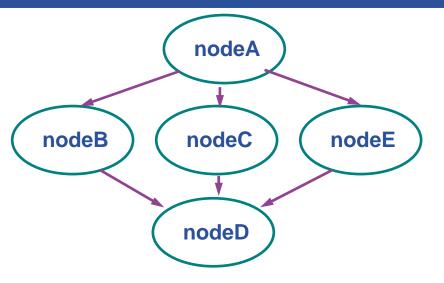
- gLite follows the job submission concept for application execution and resource sharing
- A job is a self contained entity that packages and conveys all the required information and artifacts for the successful remote execution of an application.
 - Executable files
 - Input/Output data
 - Parameters
 - Environment
 - Infrastructure Requirements
 - Workflows

• Described using the Job Description Language (JDL)

1. Simple jobs – submitted to WMS to run in batch mode

2. Job invokes grid services

- To read & write files on SE
- Monitoring
- For outbound connectivity (interactive jobs)
- To manage metadata
- ...


3. Complex jobs

- An environment controls multiple jobs on users' behalf
 - High-level services
 - Portals with workflow
 - Software written for the VO (or by the user)
 - ...

Complex Workflows

- Enabling Grids for E-sciencE
- Direct Acyclic Graph (DAG) is a set of jobs where the input, output, or execution of one or more jobs depends on one or more other jobs
- A Collection is a group of jobs with no dependencies
 - basically a collection of JDL's

- A Parametric job is a job having one or more attributes in the JDL that vary their values according to parameters
- Using compound jobs it is possible to have one shot submission of a (possibly very large, up to thousands) group of jobs
 - Submission time reduction
 - Single call to WMProxy server
 - Single Authentication and Authorization process
 - Sharing of files between jobs
 - Availability of both a single Job Id to manage the group as a whole and an Id for each single job in the group

Pragmatic approach to Grid application development

- Benefits and Restrictions.
- Potential compromises
- **Resource sharing (no dedicated resources)**
- Explicit and implicit collaboration (working in shared environment)
- Security risks (yes there are!)
- Performance compromises (wrt system responsiveness. Some times too much middleware!)
- Application Models (the application may have to adapt to the grid and not vice versa)

- Basic Concepts
- Types of Grid Applications
- Challenges
- Crash introduction to gLite services

- No development. Wrap existing applications as jobs. No source code modification is required
- Minor modifications. The application exposes minimal interaction with the grid services (e.g. Data Managements)
- Major modifications. A wide portion of the code is rewritten to adopt to the new environment (e.g. parallelization, metadata, information)
- Pure grid applications. Developed from scratch. Extensively exploit existing grid services to provide new capabilities customized for a specific domain (e.g. metadata, job management, credential management)

Application Programming Interfaces

Enabling Grids for E-sciencE

An **Application Programming Interface** (**API**) is the <u>interface</u> that a computer system, library or application provides in order to allow requests for services to be made of it by other computer programs, and/or to allow data to be exchanged between them.

Classic APIs

eGee

- Static compilation
- Shared libraries
- Need access to static or dynamic libraries

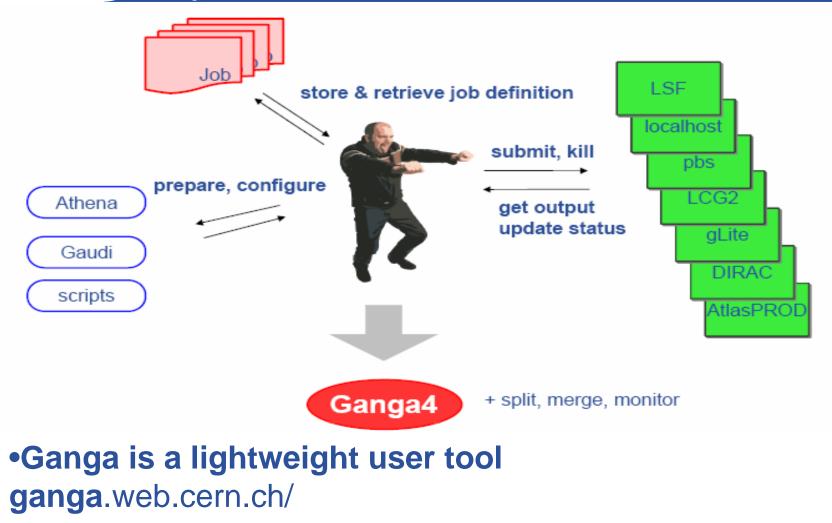
- Web Service Interfaces
 - The programmer may generate Web Service stubs and develop new clients from scratch
 - Libraries are comprised of precompiled Service clients
 - Need access to Web Services
 WSDL

Support for C, C++ and Java

Invocation of applications

- Enabling Grids for E-sciencE
- From the UI
 - Command Line Interfaces / Scripts
 - APIs
 - Higher level tools

From desktop Windows applications

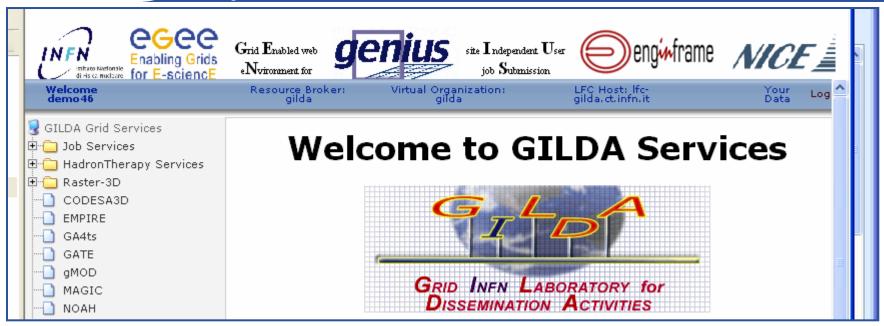

- Use Grids without awareness of them!
- But gLite not (yet) supporting Windows

From portals

- For recurring tasks: "core grid services" as well as application layer
- Accessible from any browser
- Tailored to applications
- In EGEE: P-GRADE and GENIUS

Example of higher-level tools: GANGA

Enabling Grids for E-sciencE

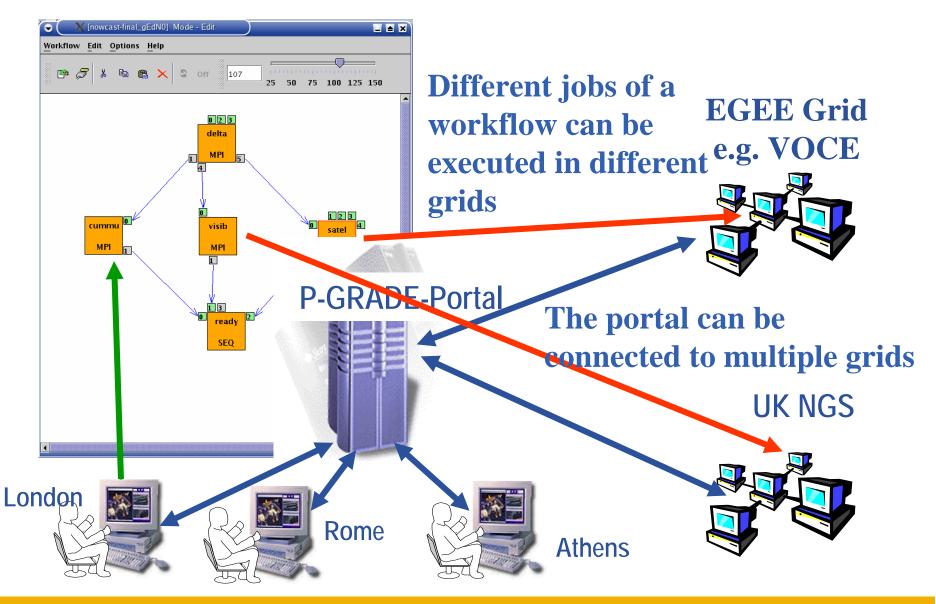

• But also: Ganga is a developer framework

EGEE-II INFSO-RI-031688

eGee

Enabling Grids for E-science

GENIUS


• For many application communities

- Interface can be tailored for specific requirements

• For demonstration purposes

- <u>https://glite-demo.ct.infn.it/</u>
 - Available for anyone to use
- <u>https://glite-tutor.ct.infn.it/</u>
 - Fuller functionality for users who have stored long-lived proxy in MyProxy server

- Basic Concepts
- Types of Grid Applications
- Challenges
- Crash introduction to gLite services

CGCC Different Goals for App. Development

- I need resources for my research
 - I need richer functionality
 - MPI, parametric sweeps,...
 - Data and compute services together...

• I provide an application for (y)our research

- How!?
 - Pre-install executables ?
 - Hosting environment?
 - Share data
 - Use it via portal?
- We provide applications for (y)our research
 - Also need:
 - Coordination of development
 - Standards

• ...

Π ngineering challenges increasing

Challenges

Enabling Grids for E-sciencE

• Research software is often

GGGG

- Created for one user: the developer
- Familiarity makes it useable
- Short-term goals:
 Used until papers are written and then discarded

Grid applications are often used

- by a VO
- Without support from developer
- In new contexts and workflows

Need expertise in:

- software engineering
- application domain
- grid computing/

- Grid application developers are
 - In a research environment
 - Yet their s/w must have:
 - Stability
 - Documentation
 - Useability
 - Extendability
 - i.e. Production quality

- Team work!
- Engaged in world-wide initiatives reuse, don't make your own! Cross disciplines for solutions.
- From research to production software: ~5 times the effort.
 - "80% of the time for last 10% of the functionality & reliability"
- Standardisation is key
 - For re-use, for dynamic configuration of services,...
 - Both for middleware and domain specific (e.g. GEON)

• Need to follow a deliberate development process

- Waterfall? Rapid prototyping?
- Requirements engineering, design, implementation, validation, deployment
- Engaged with the user community

- Basic Concepts
- Types of Grid Applications
- Challenges
- Crash introduction to gLite services

More about gLite services

- Enabling Grids for E-sciencE
- gLite 3.0 Workload Management

Accessing data on SEs

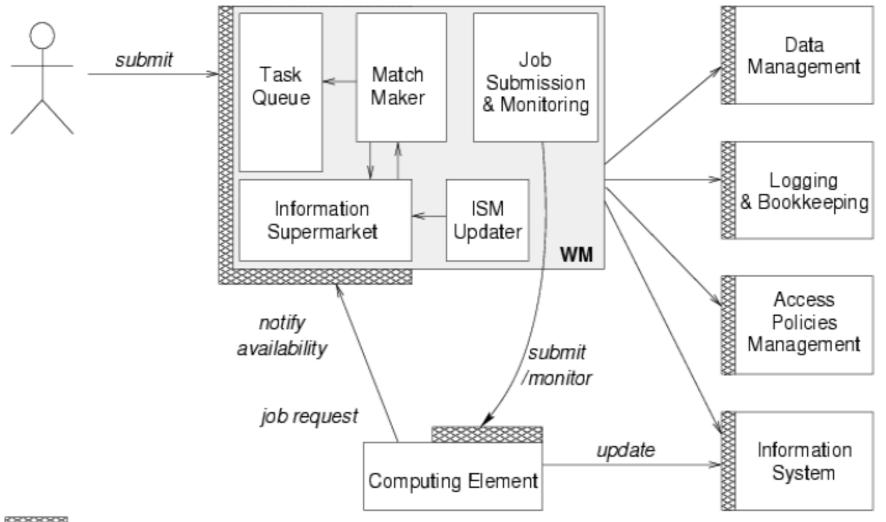
- Can have massive files, too big to copy
- How to access these?

Management of metadata

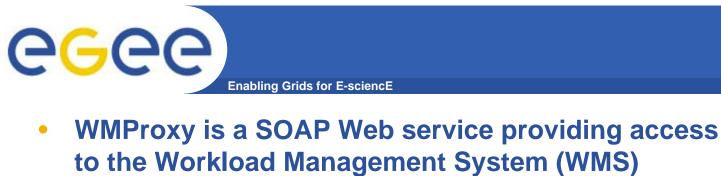
- May have many thousands of files
- Need to access and re-use based on characteristics... more than by their logical file names.

Monitoring of applications

- May be running many long jobs
- What's happening?!

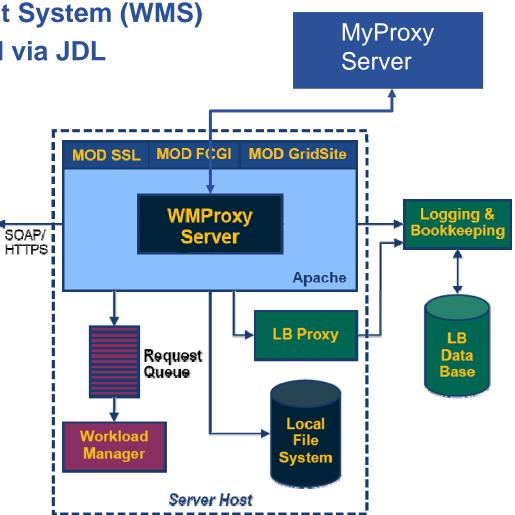


- Helps the user accessing computing resources
 - resource brokering
 - management of input and output
 - management of complex workflows
- Support for MPI job even if the file system is not shared between CE and Worker Nodes (WN) – easy JDL extensions
- Web Service interface via WMProxy



Workload Management System

Enabling Grids for E-sciencE



Web Service Interface

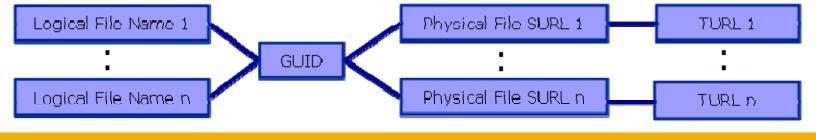
Client

- Job characteristics specified via JDL
 - jobRegister
 - create id
 - map to local user and create job dir
 - register to L&B
 - return id to user
 - input files transfer
 - jobStart
 - register sub-jobs to L&B
 - map to local user and create sub-job dir's
 - unpack sub-job files
 - deliver jobs to WM

WMProxy

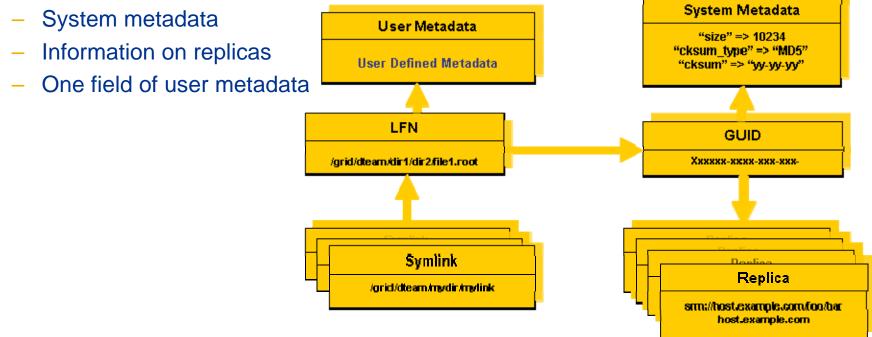
- User and programs produce and require data
- Data may be stored in Grid datasets (files)
 - Located in Storage Elements (SEs)
 - Accessed/Transferred using GSIFTP
 - Several replicas of one file in different sites
 - Accessible by Grid users and applications from "anywhere"
 - Locatable by the WMS (data requirements in JDL)

• Also...


- WMS can send (small amounts of) data to/from jobs: Input and Output Sandbox
- Data may be copied from/to local filesystems (WNs, UIs) to the Grid

- Logical File Name (LFN)
 - An alias created by a user to refer to some item of data, e.g. "lfn:cms/20030203/run2/track1"
- Globally Unique Identifier (GUID)
 - A non-human-readable unique identifier for an item of data, e.g.
 "guid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6"
- Site URL (SURL) (or Physical File Name (PFN) or Site FN)
 - The location of an actual piece of data on a storage system, e.g. "srm://pcrd24.cern.ch/flatfiles/cms/output10_1" (SRM)
 "sfn://lxshare0209.cern.ch/data/alice/ntuples.dat" (Classic SE)

Transport URL (TURL)


Temporary locator of a replica + access protocol: understood by a SE, e.g.
 "gsiftp://lxshare0209.cern.ch//data/alice/ntuples.dat"

The Logical File Catalog

- Manages the identification, sharing and replication of data in the gLite Grid.
- LFN acts as main key in the database. It has:
 - Symbolic links to it (additional LFNs)
 - Unique Identifier (GUID)

Security (VOMS)

- Metadata (AMGA)
- Monitoring (R-GMA)

. . .

www.eu-egee.org