### **Results obtained with XFitter**

### - Overview

- General/Phenomenological studies
- HERA results
- LHC data

#### Kristin Lohwasser<sup>1</sup>

<sup>1</sup>University of Sheffield



**European Research Council** 

Established by the European Commission



The University Of Sheffield.

### **Overview: A huge amount of XFitter publications**

#### > 45 publications in total, 13 since the last workshop in dubna [1]

- 2 analyses by the xFitter team
- 10 by researchers using the xFitter code
- All listed from the website [2]

[1] https://indico.cern.ch/event/458944/contrib utions/1972225/attachments/1230431/1803354/ pirumov\_dubna\_180216.pdf

[2]https://www.xfitter.org/xFitter/xFitter/results

#### List of analyses by xFitter

| The link to the list of analyses using former HERAFitter can be accessed 🔨 here |           |                                                   |                                        |                                                                              |
|---------------------------------------------------------------------------------|-----------|---------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------|
| 4                                                                               | 4 01.2017 | F. Giuli, xFitter Developers' team and M. Lisovyi | arXiv:1701.08553                       | The photon PDF from high-mass Drell Yan data at the LHC                      |
| 4                                                                               | 3 03.2016 | xFitter and APFEL teams and A. Geiser             | JHEP 1608 (2016) 050, arXiv:1605.01946 | A determination of mc(mc) from HERA data using a matched heavy flavor scheme |

#### List of analyses using xFitter

| Number | Date    | Group                                        | Reference                                        | Title                                                                                                                        |
|--------|---------|----------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 2016   |         |                                              |                                                  |                                                                                                                              |
| 42     | 03.2017 | CMS                                          | arXiv:1703.01630, submitted to EPJC (TOP-14-013) | Measurement of double differential cross sections for top quark pair production in pp collisions at 8 TeV and impact on PDFs |
| 41     | 02.2017 | A. Aleedaneshvara, M. Goharipour, S. Rostami | Chin Phys C 41, 2 (2017) 023101                  | Uncertainty of parton distribution functions due to physical observables in a global analysis                                |
| 40     | 01.2017 | Y.G. Gbedo, M. Mangin-Brinet                 | arXiv:1701.07678                                 | Markov Chain Monte Carlo technics applied to PDF determination: proof of concept                                             |
| 39     | 01.2017 | АВМР                                         | arXiv:1701.05838                                 | Parton Distribution Functions, as and Heavy-Quark Masses for LHC Run II                                                      |
| 38     | 12.2016 | ATLAS                                        | arXiv:1612.03636                                 | Measurements of top-quark pair to Z-boson cross-section ratios at s = 13; 8; 7 TeV with the ATLAS detector                   |
| 37     | 12.2016 | ATLAS                                        | arXiv:1612.03016                                 | Precision measurement and interpretation of inclusive W and Z production with the ATLAS detector                             |
| 36     | 12.2016 | A. Aleedaneshvara, M. Goharipour, S. Rostami | EPJA (2016) 52: 352                              | The impact of intrinsic charm on the parton distribution functions                                                           |
| 35     | 11.2016 | CMS                                          | CMS PAS SMP-16-011                               | Measurement of triple-differential dijet cross sections at 8 TeV with the CMS detector and constraints on PDFs               |
| 34     | 11.2016 | A. Luszczak and H. Kowalski                  | arXiv:1611.10100, PRD 95 (2017)014030            | Dipole model analysis of highest precision HERA data, including very low Q2's                                                |
| 33     | 11.2016 | PROSA                                        | arXiv:1611.03815                                 | Prompt neutrino fluxes in the atmosphere with PROSA parton distribution functions                                            |
| 32     | 06.2016 | ATLAS                                        | arXiv:1606.01736                                 | • Measurement of the double-differential high-mass Drell-Yan cross section in pp collisions at 8 TeV with the ATLAS detector |
| 45:    |         | CMS                                          | arXiv:1609.05331                                 | Double-differential inclusive jet cross-sections at $\sqrt{s}$ = 8 TeV and ratios to 2.76 and 7 TeV                          |



### Looking into the details

#### > Nothing changed to much from Dubna review

LHC is still the biggest client so far





#### > 2016: Dubna

- 2 Xfitter team publications in 2016/2017
- In addition to the papers: 16 conference talks in 2016



#### > Now this is perhaps the actual key question to ask when thinking about

- How to develop the package as is now ( $\rightarrow$  Voica's overview talk)
- For the future (→ Sasha's talk on plans)

| LHC: 6 papers     | Using mainly full fit, profiling or reweighting to investigate sensitivity of new measurement                                                                        |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HERA: 1 papers    | More detailed analysis complementary to the main HERA results: <b>beyond the standard approach / data</b>                                                            |
| Theory: 3 papers  | Specialized analysis / interpretations, possibly with additions to the code, but without feedback to main code or basic methodology / proof-of-principle development |
| Other: 2 papers   | Very basic Xfitter usage (e.g. plotting) – feedback unclear                                                                                                          |
| Xfitter: 2 papers | Usually a <b>project with larger developments</b> within Xfitter needed – extending the scope and the possibilities                                                  |

## Wide and exciting range of use cases !!!



### LHC results: W/Z bosons, tops and jets

3 mass ranges  $46 < m_{\mu} < 150 \text{ GeV}$ 

using k-factors ( $\sim$ 1-2%, 5% for m<sub>n</sub>)

VFNS, m\_=1.43 GeV, m\_=4.5 GeV

(similar to 2010 "strange sea fit")

NNLO QCD + NLO EW fit

■ W<sup>+</sup>/W<sup>-</sup>: |n| (ℓ) < 2.5

15 free parameters

•  $Q_0^2 = 1.9 \text{ GeV}^2$ 

•  $Z/\gamma^*$  :  $|y|(\ell \ell) < 3.6$  for

> High precision differential measurements of W and Z bosons

HERA I+II CC  $e^+p$ α<sub>s</sub> = 0.118 GeV HERA I+II CC  $e^-p$  $xu_{v}(x) = A_{u_{v}}x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}(1+E_{u_{v}}x^{2}),$ HERA I+II NC  $e^-p$ HERA I+II NC  $e^+p$  $xd_{v}(x) = A_{d_{v}}x^{B_{d_{v}}}(1-x)^{C_{d_{v}}},$ HERA Correlated + Log penalty  $x\bar{u}(x) = A_{\bar{u}}x^{B_{\bar{u}}}(1-x)^{C_{\bar{u}}},$ **HERA** Total  $x\bar{d}(x) = A_{\bar{d}}x^{B_{\bar{d}}}(1-x)^{C_{\bar{d}}},$ Total  $xg(x) = A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g}$  $x\bar{s}(x) = A_{\bar{s}}x^{B_{\bar{s}}}(1-x)^{C_{\bar{s}}}$ Kristin Lohwasser | xFitter Meeting Oxford | 20.03.2017 | 5

Data set ATLAS-epWZ16  $\chi^2/n.d.f.$ ATLAS  $W^+ \rightarrow \ell^+ \nu$ 8.4 / 11 ATLAS  $W^- \rightarrow \ell^- \bar{\nu}$ 12.3 / 11 Full fletched PDF fit on top of Hera Dat ATLAS  $Z/\gamma^* \rightarrow \ell\ell \ (m_{\ell\ell} = 46-66 \text{GeV})$ 25.9/6 ATLAS  $Z/\gamma^* \rightarrow \ell\ell \ (m_{\ell\ell} = 66-116 \text{GeV})$ 15.8 / 12 ATLAS forward  $Z/\gamma^* \rightarrow \ell\ell \ (m_{\ell\ell} = 66-116 \text{GeV})$ 7.4/9 ATLAS  $Z/\gamma^* \rightarrow \ell\ell \ (m_{\ell\ell} = 116 - 150 \text{GeV})$ 7.1/6 ATLAS forward  $Z/\gamma^* \rightarrow \ell\ell \ (m_{\ell\ell} = 116-150 \text{GeV})$ 4.0/627.2ATLAS Correlated + Log penalty ATLAS Total 108 / 61 44.3 / 39 62.7 / 42 222 / 159 838 / 816 45.5 1213 / 1056 1321 / 1102

arXiv:1612.03016

### LHC results: Strange quarks

- Result consistent with 2010 W/Z data QCD analysis yielding ATLAS-epWZ15
  - Strange sea even more enhanced than before
  - Multiple checks done yielding still an enhance strange with no difference to r.
    - > Removing constrain  $\overline{u} = \overline{d} \rightarrow 0$
    - > Adding E866 data (that predicts positive  $x\overline{d} x\overline{u} \sim 0.04$ )
    - Separate analyses of electron and muon data, discarding of low mass Z
  - Forcing suppressed strange yields significant worse fit
- Consistent and robust results with independent ATLAS data



arXiv:1612.03016

### **Further strange sea investigations**

### > Profiling used to investigate impact on other PDF sets

It's in the data!





Kristin Lohwasser | xFitter Meeting Oxford | 20.03.2017 | 7

arXiv:1612.03016

### W/Z bosons and electroweak parameters

#### > Xfitter allows to leave also other parameters free

- Determination of  $|V_{cs}|$  matrix element competitive to other measurements





### Z/top double ratios: Reducing luminosity uncertainty

#### Measurements of fiducial cross sections of Z boson and top quarks

Correlated over 7,8,13 TeV



**ATLAS** 8 TeV, 20.2 fb<sup>-1</sup>

13 TeV, 3.2 fb<sup>-1</sup> data ± total uncertainty data ± stat. ± exp. uncertainty data ± stat. uncertainty

ABM12

## LHC results: Double-differential $t\bar{t}$ measurements

- Double-differential top production cross-sections at CMS √s = 8 TeV, L=19.7 fb<sup>-1</sup>, eµ channel, any of the following variables are measured differentially in bins of invariant mass of the top system M(tt̄)
  - Transverse momentum top quark pT(t)
  - Rapidity of top quark y(t)
  - Transverse momentum of top quark pair system pT(tt̄)
  - Rapidity of top quark pair system pT(tt)
  - Pseudo-Rapidity between top and anti-top quark Δη(tt̄)
  - Angle between top and anti-top quark in transverse plane Δφ(tt̄)
- > Compared to NLO predictions
  - MCFM
  - Approximate NNLO for pT / y (t) using DiffTop





The University Of

Sheffield.

### LHC results: Top results constraining the gluon

arXiv:1703.01630

> NLO PDF fit carried out including HERA and CMS W asymmetry with top added

- Expected sensitivity 0.01 < x < 0.25</p>
- 18 parameter fit after optimization
- TR-VFNS used with 5 flavours,  $m_c = 1.47 \text{ GeV}$ ,  $m_b = 4.5 \text{ GeV}$
- Angle between top and anti-top quark in transverse plane  $\Delta \phi(t\bar{t})$
- Fixed strange of  $f_s = 0.4$  ( $r_s = 0.66$ ) consistent with CMS W+c measurement





Kristin Lohwasser | xFitter Meeting Oxford | 20.03.2017 | 11

Of

Sheffield.

After coffee break!!

### > More on the gluon: two results on jet production from CMS

- Double-differential inclusive jet cross-sections at √s = 8 TeV and ratios to 2.76 and 7 TeV [arXiv:1609.05331]
- Triple-differential dijet cross-sections at  $\sqrt{s}$  = 8 TeV [CMS-PAS-SMP-16-011]
- Both yield constraints on gluon distributions at medium-x (with some increase at high-x), dijets with larger sensitivity to light quark and impact on valence quarks





### Investigation of the low-x part of the HERA data and its description





- Describe inclusive and diffractive simultaneously: Photon modeled as fluctuating into qq (or qqg...) system before interacting with the proton
- Final precision HERA data allows to probe models much more deeply than ever before
- Investigation of the BGK (Golec-Biernat, Kowalski) that combines dipole model with the DGLAP evolution for the gluon density

### > Key questions:

- Is the gluon best described as soft or are there also hard components?
- Is there any sign of saturation of the gluon density?

arXiv:1611.10100



### **HERA** results

#### 16:50

Speaker: Agnieszka Luszczak

**Dipole Models in xFitter** 

### Tuesday

BGK NLO fit with sat



Fit of the high-Q<sup>2</sup> regime: 3.5 – O(250) GeV<sup>2</sup>

 $\rightarrow$  Test of the validity of the dipole model in the regime still well described by DGLAP evolution

 $\rightarrow$  Test soft and hard gluon models

 $\rightarrow$  Test impact of valence quarks on the fits (previous data not sensitive enough)

Extend the fit to lower Q<sup>2</sup>: 0.35 - 3.5 GeV<sup>2</sup>

 $\rightarrow$  Test whether dipole models can extend the perturbative regime also when confronted with much more precise data

 $\rightarrow$  Are there signs of saturation?

Yes!







#### Kristin Lohwasser | xFitter Meeting Oxford | 20.03.2017 | 14

### Theory results: Intrinsic charm strikes back

#### > First proposed by Brodsky et el. (BHPS model) – but so far unclear evidence

- "extrinsic" charm generated by gluon splitting (particularly at low-x)
- Intrinsic charm however described as non-perturbative fluctuations of the proton into a |uudqq> Fock state → these other kind of sea quarks exist independent of the time or the momentum with which the proton is probed (it's a high-x thing!)
- A new investigation with old data: Inclusion of EMC data in a global Xfitter analysis
- European Muon Collaboration (EMC) measured charm production in muon deep inelastic scattering using various target (1980's)
  - $\rightarrow$  data are however rarely used in global fits: issues with DIS structure function

 $\rightarrow$  large inconsistencies with other data sets confirmed by different global fitter groups

A. Aleedaneshvara, M. Goharipour, S. Rostami **EPJA (2016) 52: 352** The impact of intrinsic charm on the parton distri bution functions



### Intrinsic charm: Setup of the global fit

### > Strategy of the fit: Include as many data as possible using Xfitter

- Fairly standard setup: HERAPDF parametrization at a starting scale Q<sup>2</sup><sub>0</sub> =1 GeV<sup>2</sup>
- Using parameter optimization and constraints from sum rules as well as:

 $xs = f_s xD$  with  $f_s = 0.31$ xu ~ xd → 0 → 14 free parameters  $\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} \left( 1 + D_g x + F_g \sqrt{x} \right), \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left( 1 + D_{u_v} x + E_{u_v} x^2 \right) \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}}, \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}. \end{aligned}$ 

Kristin Lohwasser | xFitter Meeting Oxford | 20.03.2017 | 16

- = Fixing  $\alpha_s$  = 0.118, using aMCfast, Applgrid, MadGraph and MCFM for predictions
- Kinematic cuts on data:  $Q^2>4$  GeV<sup>2</sup>,  $W^2 > 15$  GeV<sup>2</sup> (for xF<sub>3</sub>,  $W^2 > 15$  GeV<sup>2</sup>)
- Thorne-Roberts general-mass variable-number scheme for heavy quarks
- Sum of perturbative and non-perturbative F<sup>C</sup><sub>2</sub> contributions fitted:

$$F_{2,tot}^{c}(x,Q^{2},m_{c}^{2}) = F_{2}^{c}(x,Q^{2},m_{c}^{2}) + F_{2,IC}^{c}(x,Q^{2},m_{c}^{2}).$$

• With instrinsic c(x) =  $6x^2 [(1-x)(1+10x+x^2)+6x(1+x)\ln(x)]$ , charm PDF

Constantion of the second

EPJA (2016) 52: 352

The

Эf

University

Sheffield.

- -

| Dataset                     | No EMC  | $+ \mathrm{EMC}$ | +EMC+IC |
|-----------------------------|---------|------------------|---------|
| HERA1+2 NCep 820 [5]        | 78/68   | 85/68            | 80/68   |
| HERA1+2 NCep 920 [5]        | 470/363 | 517/363          | 481/363 |
| HERA1+2 NCep 460 $[5]$      | 214/200 | 214/200          | 214/200 |
| HERA1+2 NCep 575 $[5]$      | 220/249 | 215/249          | 219/249 |
| HERA1 $+2$ CCep [5]         | 41/39   | 42/39            | 43/39   |
| HERA1 $+2$ CCem [5]         | 66/42   | 68/42            | 65/42   |
| HERA1 $+2$ NCem [5]         | 233/159 | 229/159          | 232/159 |
| HERA ep $F_2^c$ [41]        | 40/47   | 45/47            | 43/47   |
| H1 99-00 ep incl. jets [55] | 12/24   | 13/24            | 12/24   |
| ZEUS incl. jets $[56, 57]$  | 53/60   | 61/60            | 53/60   |
| BCDMS $F_2$ [58]            | 308/328 | 326/328          | 311/328 |
| NMC $F_2^d / F_2^p$ [59]    | 99/79   | 81/79            | 86/79   |
| CCFR $xF_3$ [60]            | 85/78   | 82/78            | 87/78   |
| SLAC $F_2$ [39]             | 147/59  | 104/59           | 141/59  |
| EMC $F_2^c$ [22]            | —       | 190/16           | 200/16  |
| DØ Z rap. [61]              | 22/28   | 22/28            | 22/28   |
| $D\emptyset W$ asym. [62]   | 44/14   | 39/14            | 51/14   |
| CDF $Z$ rap. [63]           | 29/28   | 30/28            | 30/28   |
| CDF $W$ asymm. [64]         | 38/13   | 29/13            | 39/13   |
| ATLAS jets [65, 66]         | 41/90   | 42/90            | 41/90   |
| ATLAS $W^+, W^-, Z$ [67]    | 29/30   | 32/30            | 31/30   |
| CMS electron asymm. [68]    | 8/11    | 9/11             | 8/11    |
| CMS boson rap. $[69]$       | 58/35   | 61/35            | 60/35   |
| CMS $W$ muon asymm. [70]    | 20/11   | 36/11            | 25/11   |
| TOTAL $\chi^2/dof$          | 1.25    | 1.37             | 1.35    |

## Intrinsic charm: Fit results

Inclusion of a huge number of data set

### **Comparison of three fit settings**

- Nominal global data
- + EMC data
- + EMC data + intrisic charm (IC)

### **Striking findings**

- Increase in χ<sup>2</sup> for HERA and BCDMS data sets mitigated if IC is allowed when including EMC data
- Decrease in SLAC data χ<sup>2</sup> when including EMC data → good competability / SLAC data sensitive to intrinsic charm

EPJA (2016) 52: 352

## Intrinsic charm: The gluon and sea quark distributions

#### > EMC data has pronounced affect on actual gluon and sea distributions



This is not unexpected: momentum sum rules lead to an increase of gluon at high-x if it is decreased as x ~ 0.05 and the sea (charm) quark are very correlated with gluons. Intrinsic charm adds towards the high-x quarks (or gluons) and allows them to keep their value at x ~ 0.05

EPJA (2016) 52: 352



### Follow-up on intrinsic charm with new data

#### > New Tevatron data on $\gamma$ +c-jet production (D0 collaboration)



Same fitting setup as before – studying impa of D0 data vs. impact of EMS data

| BCDMS $F_2[37]$            | 308/328 | 326/328 | 330/328 |
|----------------------------|---------|---------|---------|
| NMC $F_2^d / F_2^p$ [40]   | 99/79   | 81/79   | 90/79   |
| $CCFR xF_3 [38]$           | 85/78   | 82/78   | 81/78   |
| SLAC $F_2$ [39]            | 147/59  | 104/59  | 90/59   |
| EMC $F_2^{c}$ [21]         | -       | 186/16  | -       |
| $DOV \gamma + c$ -jet [18] | -       | -       | 217/9   |
| DØ Z rap.[45]              | 22/28   | 22/28   | 22/28   |
| total $\chi^2/$ dof        | 1.25    | 1.37    | 1.43    |



- D0 data increases  $\chi^2$  as EMC
- SLAC data consistent with both

#### No fit of intrinsic charm tested (but should be similar)

A. Aleedaneshvara, M. Goharipour, S. Rostami Chin Phys C 41, 2 (2017) 023101 Uncertainty of parton distribution functions due to physical observables in a global analysis



## **Theory: Methodology – Markov Chains**

- > Drawback of the conventional Hessian method of PDF fitting arXiv:1701.07678
  - Assumption of what is an "acceptable" χ<sup>2</sup>: Choice of tolerance parameter

### > Application of Markov Chain Monte Carlo (MCMC) techniques

- Use an alternative way to determine uncertainties using robust statistical tools
- Mean value and uncertainty are a by-product of the PDF determination
- Confidence intervals can be extracted in controlled way





### **Others: Neutrino flux and PDF review**

#### arXiv:1611.03815

Flux of neutrinos stemming from atmospheric interactions



- Collisions: E<sub>lab</sub>~13.8 TeV
  → close to LHC
- Flux estimated based on calculations interfaced with PROSA PDF
- Important as backgrounds for neutrino telescopes
- PDF uncertainty smaller than scale (+42%, -13.5% vs. +52%, -13.5%).



 Xfitter used to compare gluon densities at low-x to other PDF sets

- ABMP16 PDF Fit: Parton distribution functions, α<sub>s</sub> and heavy quark masses
  - New PDF determination using new combined HERA data, NOMAD and CHORUS, DY and top from Tevatron and LHC
  - Xfitter used for comparison plots of the new sets with other PDFs



### **XFitter results: HMDY**

16:30

### > High Mass Drell Yan (HMDY) production

- HMDY produced via quark and gluons, but<sup>0.035</sup> for high masses photon-induced
   0.03 production reaches up to 15%
- Measurement errors as low as 1% (~lower masses)
- Sensitivity to photon PDF shown in original ATLAS paper using Xfitter Reweighting





#### > Full fit carried you by Xfitter team

- Connected with further technical developments: NLO QCD+QED corrections in APFEL
- Francesco will present details on the fit on Tuesday

arXiv:1606.01736 arXiv:1701.08553

Tuesday

Kristin Lohwasser | xFitter Meeting Oxford | 20.03.2017 | 22

### **Xfitter: Determination of charm mass**

arXiv:1605.01946

Determination based on FONLL general-mass variable-flavour-number scheme

extraction of charm mass

 $\rightarrow$  required generalization of the FONLL structure functions in terms of  $\overline{MS}$  heavy quark mass

- implemented in the general APFEL code and described in the paper
- Alternatively determination using fixed-flavour number scheme (FFN)
- Good agreement with other results





### **Xfitter: Determination of charm mass**

#### > Excellent agreement between the two schemes

arXiv:1605.01946

| scheme                            | $m_{e}(m_{e})$ [GeV]                                                                                                                           |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                                                                                                                                                |
| FONLL (this work)                 | $1.335 \pm 0.043(\exp)^{+0.019}_{-0.000}(\operatorname{param})^{+0.011}_{-0.008}(\operatorname{mod})^{+0.033}_{-0.008}(\operatorname{th})$     |
| FFN (this work)                   | $1.318 \pm 0.054 (\exp)^{+0.011}_{-0.010} (\operatorname{param})^{+0.015}_{-0.019} (\operatorname{mod})^{+0.045}_{-0.004} (\operatorname{th})$ |
| FFN (HERA) [9]                    | $1.26 \pm 0.05(\exp) \pm 0.03(\mathrm{mod}) \pm 0.02(\mathrm{param}) \pm 0.02(\alpha_s)$                                                       |
| FFN (Alekhin <i>et al.</i> ) [24] | $1.24 \pm 0.03 (\exp)^{+0.03}_{-0.02} (\operatorname{scale})^{+0.00}_{-0.07} (\operatorname{th}) (\operatorname{approx. NNLO})$                |
|                                   | $1.15 \pm 0.04 (\exp)^{+0.04}_{-0.00} (\text{scale}) \text{ (NLO)}$                                                                            |
| S-ACOT- $\chi$ (CT10) [29]        | $1.12^{+0.05}_{-0.11} \text{ (strategy 1)}$                                                                                                    |
|                                   | $1.18^{+0.05}_{-0.11} \text{ (strategy 2)}$                                                                                                    |
|                                   | $1.19_{-0.15}^{+0.06} \text{ (strategy 3)}$                                                                                                    |
|                                   | $1.24_{-0.15}^{+0.06} \text{ (strategy 4)}$                                                                                                    |
| World average [53]                | $1.275 \pm 0.025$                                                                                                                              |

 Generally higher values seem to stem from final HERA 1+2 combined inclusive data set

# → Investigation within a global fit including more charm sensitive data sets would be a very interesting endeavour!



### Conclusions

#### > Bunch of exciting and diverse results obtained using Xfitter

- Fits to vector bosons, top, jets
- Determination of charm mass
- Investigation of intrinsic charm
- Investigation of low-x dipole model
- Development of models complementory to  $\chi^2$  approach
- Extraction of Photon PDF

#### > Xfitter project is going ahead with full steam

- Providing a useful tool kit and basis for explorations to the HEP community
- Developments from the team further extend the scope and the abilities of Xfitter

#### Thanks to the team!!

