

xFitter performance: CMS report and wishes

Oleksandr Zenaiev (DESY) on behalf of the CMS Collaboration

xFitter External Meeting, Oxford 20.03.2017

- "Measurement of double-differential cross sections for top quark pair production in pp collisions at $\sqrt{s} = 8$ TeV and impact on parton distribution functions" [arXiv:1703.01630, submitted to EPJ C] using xFitter! similar measurement at 13 TeV arXiv:1610.04191
- "Measurement of Triple-Differential Dijet Cross Sections at $\sqrt{s} = 8$ TeV with the CMS Detector and Constraints on Parton Distribution Functions" [CMS-PAS-SMP-16-011] using xFitter!
- "Measurement and QCD analysis of double-differential inclusive jet cross-sections in pp collisions at $\sqrt{s} = 8$ TeV and ratios to 2.76 and 7 TeV" [arXiv:1609.05331, submitted to JHEP] using xFitter!
- "Determination of the strong coupling constant from the measurement of inclusive multijet event cross sections in pp collisions at $\sqrt{s} = 8$ TeV" [CMS-PAS-SMP-16-008]
- "Measurement of associated Z + charm production in pp collisions at $\sqrt{s} = 8 \text{ TeV}$ " [CMS-PAS-SMP-15-009]

2D tt [arXiv:1703.01630]

Why measure $t\bar{t}$ production?

- m_t provides a hard scale \Rightarrow ultimate probe of pQCD (NLO, aNNLO, NNLO, ...)
- Produced mainly via gg
 ⇒ constrain gluon PDF
- Inclusive and 1D $t\bar{t}$ already in PDF fits
- \bullet Production sensitive to α_s and m_t
- May provide insight into possible new physics

Why measure 2D?

- Previous 1D measurements revealed some trends
- 2D measurement: especially better PDF sensitivity

2D $t\bar{t}$: analysis overview [arXiv:1703.01630]

Measurement in $e\mu$ channel:

• Leptons:

- at least 2 oppositely
 - signed e, μ
- $p_T > 20 \text{ GeV}$
- $\bullet \ |\eta| < 2.4$

Jets:

- $\bullet\,$ at least 2
- $p_T > 30 \text{ GeV}$
- $|\eta|<2.4$
- at least 1 b-tagged

(similar to previous 1D measurement)

Kinematic reconstructions, 2D unfolding \Rightarrow cross sections measured **at parton level**

2D $t\bar{t}$: measured distributions [arXiv:1703.01630]

- t production:
 - y(t)- $p_T(t)$: most simple, aNNLO publicly available

• $t\bar{t}$ production:

- $M(t\bar{t})$ - $y(t\bar{t})$: most sensitive to PDFs (at LO $x_{1,2} = \sqrt{\frac{M(t\bar{t})}{s}}e^{\pm y(t\bar{t})}$)
- $M(t\bar{t})$ - $p_T(t\bar{t})$: sensitive to radiation (at LO $p_T(t\bar{t}) \equiv 0$)
- t, $t\bar{t}$ mixed:
 - $M(t\bar{t})-y(t)$: sensitive to PDFs (at LO $y(t\bar{t}) = (y(t) + y(\bar{t}))/2$)
 - $M(t\bar{t}) \Delta \phi(t, \bar{t})$: sensitive to radiation (at LO $\Delta \phi(t\bar{t}) \equiv \pi$)
 - $M(t\bar{t})$ - $\Delta\eta(t,\bar{t})$: correlated with $p_T(t)$ as well as sensitive to radiation

2D *tt*: PDF fit [arXiv:1703.01630]

- Using xFitter (former HERAFitter): open-source QCD fit framework
 [EPJ C75 (2015) 394, xfitter.org]
- Input data:
 - HERA inclusive DIS data [EPJ C75 (2015) 580]
 - CMS W asymmetry [EPJ C76 (2016) 469]
 - these 2D $t\bar{t}$
- NLO calculations for tt̄ [NPB373 (1992) 295] using MCFM ⊕ ApplGrid
- \bullet Significant improvement of g at high x
- Best improvement comes from $M(t\bar{t})$ - $y(t\bar{t})$

2D tt: PDF fit: 2D vs 1D [arXiv:1703.01630]

- Repeated analysis for 1D distribution $p_T(t)$, y(t), $M(t\bar{t})$, $y(t\bar{t})$
- Checked their impact on PDFs

- 2D impact exceeds 1D
- First study of such kind
- Strongly suggests to use these data in global PDF fits

Triple-differential dijets [CMS-PAS-SMP-16-011]

Measurement at 8 TeV, L = 19.7 fb⁻¹, anti- $k_T R = 0.7$

® q_iq_i → jets ④ q_iq_i → jets ② gq \rightarrow jets ($x_q < x_0$) 3D cross sections $aa \rightarrow iets (x_a > x_a)$ Subprocess fraction 9.0 8.0 8.0 • $p_{T,avg} = (p_{T,1} + p_{T,2})/2$, • rapidity separation $y^* = \frac{1}{2}|y_1 - y_2|$ • dijet boost $y_b = \frac{1}{2}|y_1 + y_2|$ 2 0.4 **(1**) 0.2 $\frac{1}{2}|y_1 - y_2|$ 200 300 500 1000 pt. avg / GeV y* = $qq \rightarrow jets (x_q < x_q)$ $gq \rightarrow jets (x_q > x_p)$ $\mathbf{2}$ 2 0.4 1 0.2 $2 \le y_b < 3$ $0 \le y^* < 1$ (1) 200 300 p_{T, avg} / GeV 0 > 80% with at least one g at large y_b 0

 $y_{\rm b} = \frac{1}{2}|y_1 + y_2|$

Data compatible with theory over a wide range of phase space

Triple-differential dijets [CMS-PAS-SMP-16-011]

Data uncertainties:

- jet energy scale (2.5-12%)
- statistical uncertainties $\sim 1\%$, up to 20% at high $p_{\rm T,avg}$

Theory uncertainties larger than experimental

CMS

Exp. Linc

dN@ 1.4

19.7 fb-1 (8 TeV)

 $0 \le v_h < 1$

 $0 \le y^* < 1$

Triple-differential dijets: PDF fit [CMS-PAS-SMP-16-011]

- **3D** cross sections ultimately probe Q^2 , x_1 , x_2 in PDFs
- PDF fit using HERA DIS + these 3D dijet data
- strong improvement of gluon distribution, precise α_s extraction:

 $\alpha_{S}(M_{Z}) = 0.1199 \pm 0.0015 \,(\text{exp}) \pm 0.0002 \,(\text{mod}) \,{}^{+0.0002}_{-0.0004} \,(\text{par}) \,{}^{+0.0031}_{-0.0019} \,(\text{scale})$

Inclusive jets [arXiv:1609.05331]

• Measurement at 8 TeV, anti- $k_T R = 0.7$:

- $74 < p_T < 2500 \text{ GeV} (L = 19.7 \text{ fb}^{-1})$
- $21 < p_T < 74$ GeV ($L = 5.6 \text{ pb}^{-1}$) NEW!
- 2D cross sections as function of p_T and y

Inclusive jets: comparison to theoretical predictions [arXiv:1609.05331]

- Data uncertainties: jet energy scale (1-45% depending on y), lumi (2.6%)
- NLO uncertainties: scales (5-40%), PDFs (10-100%)
- Data well distinguish between PDFs
- Ratios 2.76/8, 7/8 available: partial reduction of uncertainties

Inclusive jets: PDF fit [arXiv:1609.05331]

• Data: combined HERA DIS + these jet data

- Theory (for all jet results): NLOJET++ interfaced to fastNLO + EWK, if available
- Strong improvement of gluon distribution, precise α_s extraction:

 $\alpha_{\rm S}(\bar{M_{\rm Z}}) = 0.1185^{+0.0019}_{-0.0021}\,(exp)^{+0.0002}_{-0.0015}\,(model)^{+0.0000}_{-0.0004}(param)^{+0.0022}_{-0.0018}\,(scale)$

Consistent and competitive PDF constraints using different CMS data! Complementary sensitivity to α_s and m_t

 \Rightarrow one should use all the data sets to better test/constrain different QCD aspects

Many new results from CMS using xFitter:

• 2D *tt* [arXiv:1703.01630]:

- first PDF fit of 2D $t\bar{t}$: demonstrated better impact on PDFs w.r.t 1D
- results competitive to those from jets
- WISH: fully-differential NNLO \Rightarrow would allow to study PDFs, α_s , m_t by fitting e.g. total + 2(3..)D normalised $t\bar{t}$ x-sections

• 3D dijets [CMS-PAS-SMP-16-011]:

- ultimate probe PDFs
- ${\ensuremath{\, \bullet }}$ improved gluon distribution, accurate α_s determination
- WISH: NNLO needed to match data precision

• Inclusive jets [arXiv:1609.05331]:

- improved gluon distribution, accurate α_s determination
- $\bullet\,$ ratios $7/8,\,2.76/8$ available: partial cancelation of theory and exp. unc.
- WISH: NNLO needed to match data precision

For many of these measurements data are typically more precise than theory: need higher order calculations to fully reveal data precision

BACKUP

BACKUP. Multijets [CMS-PAS-SMP-16-008]

- Measurement at 8 TeV, L = 19.7 fb⁻¹, anti- $k_T R = 0.7$
- 2-jet and 3-jet event cross sections as function of average transverse momentum $H_{T,2}/2 = \frac{1}{2}(p_{T,1} + p_{T,2})$ of two leading jets

Data are described by theory predictions

BACKUP. Multijets [CMS-PAS-SMP-16-008]

3-jet to 2-jet cross section ratio R_{32} :

- many uncertainties cancel
- sensitive $lpha_s$
- $\Rightarrow \alpha_s$ extracted, also in ranges of $H_{{
 m T},2}/2$

Precise α_s extraction, consistent with other CMS results:

 $lpha_s(M_Z) = 0.1150 \, \pm 0.0010 \, ({
m exp}) \, \pm 0.0013 \, ({
m PDF}) \, \pm 0.0015 \, ({
m NP}) \, {}^{+0.0050}_{-0.0000} \, ({
m scale})$

BACKUP. Measurement of associated Z + charm production [CMS-PAS-SMP-15-009]

- Measurement at 8 TeV, $L = 19.7 \text{ fb}^{-1}$
- Cross section of Z + c and ratio Z + c/Z + b as function of p_T
- Important for searches beyond SM, sensitive to possible intrinsic charm

Data are compared to NLO calculations with different PDFs (including those with IC)

 $\alpha_{\rm S}(M_Z)({\rm NLO}) = 0.1164^{+0.0025}_{-0.0029}({\rm PDF})^{+0.0053}_{-0.0028}({\rm scale}) \pm 0.0001({\rm NP})^{+0.0014}_{-0.0015}({\rm exp}) = 0.1164^{+0.0060}_{-0.0043}({\rm exp}) = 0.0001({\rm NP})^{+0.0014}_{-0.0015}({\rm exp}) = 0.0001({\rm exp})^{+0.0014}_{$

Using CT10NLO PDFs

- Result consistent with other determinations
- Performed in separate p_T bins: determine running $\alpha = \alpha(Q)$

BACKUP. Kinematic reconstruction

- Measured input: leptons, jets, MET
- Unknowns: \bar{p}_{ν} , $\bar{p}_{\bar{\nu}}$ (6)
- Constraints:
 - m_t , $m_{\bar{t}}$ (2)
 - m_{W^+}, m_{W^-} (2)
 - $(\bar{p}_{\nu} + \bar{p}_{\bar{\nu}})_T = MET$ (2)
- Take weighted average of 100 reconstructions with inputs smeared by their resolution
- This helps to recover events with no solution because of detector effects

[Phys. Rev. D73 (2006) 054015]

BACKUP. Kinematic distributions

Following 1D cross section measurement (TOP-12-028):

- pile-up
- lepton selection
- trigger efficiency
- jet energy scale and resolution ($\lesssim 2\%$)
- b-tagging efficiency
- kinematic reconstruction efficiency
- background variation:
 - DY varied separately by $\pm 30\%$
 - $\bullet\,$ other backgrounds varied simultaneously by $\pm 30\%$
- model uncertainties ($\lesssim 10\%$):
 - perturbative scale variation
 - matching scale variation
 - *m_t* variation
 - PDFs
 - Hadronization (PowhegHerwig PowhegPythia)
 - Hard scattering (PowhegPythia MadgraphPythia)

BACKUP. χ^2 comparison w.r.t NLO

Distribution	NDoF	MC				NLO nominal (including PDF unc.)						
		MP	PP	PH	мн	HERAPDF2	MMHT14	CT14	NNPDF30	ABM11nf5	JR14	CJ12
$y(t) - p_T(t)$	15	96	58	14	46	46 (40)	26 (24)	24 (21)	28 (25)	62 (51)	47 (47)	24 (23)
$M(t\bar{t}) - y(t)$	15	53	20	13	21	52 (44)	22 (20)	19 (18)	14 (14)	71 (55)	44 (44)	20 (20)
$M(t\bar{t}) - y(t\bar{t})$	15	19	21	15	22	29 (25)	15 (15)	16 (15)	10 (10)	42 (31)	25 (25)	15 (15)
$M(t\bar{t}) - \Delta\eta(t\bar{t})$	11	163	33	20	39	46 (43)	31 (31)	32 (31)	45 (42)	48 (44)	39 (39)	32 (32)
$M(t\bar{t}) - p_T(t\bar{t})$	15	31	83	30	33	485 (429)	377 (310)	379 (264)	251 (212)	553 (426)	428 (415)	382 (378)
$M(t\bar{t}) - \Delta\phi(t\bar{t})$	11	21	21	10	17	354 (336)	293 (272)	296 (259)	148 (143)	386 (335)	329 (324)	297 (295)

Monte Carlo

- MP: MadGraph(CTEQ6) + Pythia6
- PP: Powheg(CT10) + Pythia6
- PH: Powheg(CT10) + Herwig6
- MH: MC@NLO(CTEQ6) + Herwig6

Overall description by MCs:

- best: Powheg + Herwig
- worst: MadGraph + Pythia

NLO

Some comments on PDFs:

- MMHT14, CT14 and NNPDF30: use LHC data
- other PDFs: no LHC data

Overall description by different PDFs:

- best: MMHT14, CT14, NNPDF30, CJ12
- worse: HERAPDF2.0, JR14, ABM11nf5

Particular distributions described by "best" PDFs:

- bad description of $\Delta \phi(t\bar{t})$ and $p_T(t\bar{t})$
- \bullet also bad description of $\Delta\eta(t\bar{t})$
- reasonable description of the rest

BACKUP. Framework of QCD analysis

In short: similar to HERAPDF2.0 fit with $t\bar{t}$ data included (any publicly reproducable PDF fit would serve the purpose)

• Platform: xFitter (former HERAFitter) [www.xfitter.org]

- Input data: HERA $e^\pm p$ inclusive data [1506.06042], $Q^2_{\rm min}>3.5~{\rm GeV}^2$ + CMS W asym. 8TeV [1603.01803] + $t\bar{t}$ normalised 2D data
- RT optimal variable-flavour-number scheme with $n_f = 5$, $\alpha_s^{n_f=5}(M_Z) = 0.118$, $M_c = 1.47$ GeV, $M_b = 4.50$ GeV
- Predictions for tt̄:
 - MNR calculations [NPB373 (1992) 295] via MCFM \otimes ApplGrid \otimes xFitter
 - pole top mass $m_t = 172.5 \text{ GeV}$
 - scales $\dot{\mu}_r^2 = \mu_f^2 = m_t^2 + (p_T^2(t) + p_T^2(\bar{t}))/2$
- PDF parametrisation: 18 free parameters HERAPDF style
- Uncertainties:
 - Experimental: from $\Delta \chi^2 = 1$
 - Model: from theoretical and model parameter variations
 - Parametrisation: from μ_{f0}^2 and parameterisation form variation

BACKUP. NLO vs NNLO

Is it OK to use NLO calculations?

Yes, for normalised distributions $\mathbf{p_T}(t), \mathbf{y}(t), \mathbf{M}(t\overline{t}), \mathbf{y}(t\overline{t})$ with current data precision, because:

- These are the only publicly available calculations
- Missing higher order corrections (estimated by scale variation) for NLO are small w.r.t to data:
 - $\simeq 10\%$ fot total x-section
 - $\lesssim 3\%$ for $p_T(t)$, y(t), $M(t\bar{t})$, $y(t\bar{t})$ shapes
 - Confirmed by exact NNLO calculations [Czakon et al. arXiv:1511.00549] (slightly larger effect on $p_T(t)$).

xFitter performance: CMS report and wishes