11 Z=-4 FAN FAN K = p+p'= k+k'

LHCD

LHCb Report and Wishes

Stephen Farry xFitter Users Meeting, University of Oxford Monday, 20th March 2017

UNIVERSITY OF LIVERPOOL

outline

- 1 introduction
- 2 measurements
- 3 future measurements
- 4 conclusions

introduction

Stephen Farry | University of Liverpool

data

LHCb Integrated Recorded Luminosity in pp, 2010-2016

- collected 3 fb $^{-1}$ of data in Run I at 7 and 8 TeV
- so far $\sim 2~{\rm fb}^{-1}$ of Run II data at 13 TeV
- expect 5 fb⁻¹ by end of Run II
- LHCb upgrade aims for 50 fb⁻¹

measurements

W/Z production measurements

[qd] 4.7% qd LHCb. Is = 8 TeV LHCb. $\sqrt{s} = 8 \text{ TeV}$ $p^{\mu} > 20 \text{ GeV/c}$ $p^{\mu} > 20 \text{ GeV/c}$ 2 + Data • Data $2.0 < \eta^{\mu} < 4.5$ $2.0 < \eta^{\mu} < 4.5$ Data_{stat © syst} Data_{stat © syst} Z: 60 < M < 120 GeV/c 5 210 Data_{stat © syst © beam © lumi 68.3% CL ellipse area} Data_{stat © syst © heam ©} 68.3% CL ellipse area • CT14 • CT14 • measurements of $W \rightarrow \ell \nu$ pro-MMHT14 A MMHT14 NNPDF30 NNPDF30 duction made at 7 and 8 TeV 2000 CT10 CT10 850 ABM12 ABM12 HFRA15 + HERA15 • measurements of $Z \rightarrow \ell \ell$ produc-1900 800 tion at 7, 8 and 13 TeV 1000 $\sigma_{W^{+} \rightarrow \mu^{+} V}$ [pb] $\sigma_{Z \to \mu^+ \mu^-}$ [pb]

Source	Uncertainty [%]		
	σ_{W^+}	σ_{W^-}	σ_Z
Statistical	0.19	0.23	0.27
Purity	0.28	0.21	0.21
Tracking	0.26	0.24	0.48
Identification	0.11	0.11	0.21
Trigger	0.14	0.13	0.05
GEC	0.40	0.41	0.34
Selection	0.24	0.23	_
Acceptance and FSR	0.16	0.14	0.13
Systematic	0.65	0.61	0.67
Beam energy	1.00	0.86	1.15
Luminosity	1.16	1.16	1.16
Total	1.67	1.59	1.79

8 TeV muon systematics

- precision luminosity
 - 1.2% in 2012 dataset
 - best achieved at a bunched beam hadron collider
- per-mille level precision on normalised distributions and ratios
- dominant uncertainty due to tracking efficiencies (Z) and purity (W)

impact of W/Z measurements

- preliminary plots of impact of LHCb data in NNPDF 3.1 (thank to Juan Rojo)
- factor of 2 decrease in uncertainty on down quark PDF at x = 0.2
- $\bullet\,$ sensitivity to charm quark content of the proton at large-x
 - constraints on non-perturbative charm

beauty and charm production at LHCb

- LHCb is a dedicated heavy flavour experiment
- $\bullet\,$ unique ability to identify exclusive B and D decays
 - good vertexing resolution, low mass triggers, particle identification
- beauty hadron production measured at 7 TeV using exclusive B decays and $B\to J/\psi X$ decays and at 7 and 13 TeV using semi-leptonic B decays
- charm production measured at 5, 7 and 13 TeV using exclusive charm decays

sensitivity to PDFs

- LHCb beauty and charm data sensitive to very low gluon PDF ($\sim 5x10^{-}6$)
- \bullet charm production in ultra-high-energy cosmic rays source of background to prompt neutrino flux
- overlap in kinematics between cosmic rays and LHC
- particularly interesting for astrophysics

impact of beauty and charm production

- potential of the LHCb data to constrain the low-x gluon has been studied by two groups [Phys. Rev. Lett.(2017)118:p. 072001], [1611.03815 [hep-ph]]
- normalised cross-sections provide best constraints
 - less sensitive to higher order effects
- inclusion of 5, 7 and 13 TeV LHCb charm data in NNPDF framework results in factor of 10 decrease in gluon PDF uncertainties at low-x
- \bullet PROSA collaboration include both B and D data using xFitter framework also see significant reductions

Stephen Farry | University of Liverpool

central exclusive production at LHCb

- exchange of neutral, colourless particles protons remain intact
- experimental signature events with just two muon tracks in the final state

- LHCb is ideal environment to perform measurements
 - relatively low number of pile-up collisions
 - backward VELO coverage can be exploited to identify rapidity gap
- forward region constrains gluon PDF at x down to $\sim 3x10^{-6}$
- addition of HERSCHEL detector in Run II increases measurement precision

impact of exclusive J/ψ measurements

- exclusive J/ψ production cross-section $\propto (xg(x,\bar{Q}^2))^2$
- JMRT analysis updated to include most recent LHCb data [J. Phys.(2017)G44:03LT01]
- significant reduction in low- $x\ {\rm gluon}\ {\rm PDF}\ {\rm when}\ {\rm including\ central\ exclusive\ production\ measurements\ from\ LHCb}$
- however, 'NLO' gluon PDF obtained from exclusive data not directly comparable to $\overline{\rm MS}$ PDFs of NLO global PDF sets
 - work ongoing in this direction

future measurements

Drell-Yan production

- large range of $(x,\,Q^2)$ phase space can be covered by measurements of low-mass Drell-Yan $(\gamma^*\to\mu\mu)$
 - further constraints at low- $x \ (\sim 10^{-4})$
- preliminary analysis performed with 2010 dataset (37 pb^{-1})
- measurement is ongoing and plan is to release results with Run I and Run II data in the near future

- $\bullet\,$ LHCb demonstrated potential to perform b and c tagging of jets in Run I
- $\bullet\,$ measurements of W production in association with $c\mbox{-jets}$ sensitive to strange content of the proton
- $\bullet\,$ measurements of W+c in Run-I based on $\sim 2,000$ events
- larger statistics available in Run-II more precise measurements

[Phys. Rev.(2016)D93:p. 074008]

SEA2 BHPS2 SEA1 BHPS1 IC CT14NNLO $\sigma(Z_C)/\sigma(Z_j)$ s = 14 TeV $Ldt = 15 \text{ fb}^{-1}$ $gg \rightarrow H$ 1.05 0.06 $VV \rightarrow H$ 1.05 0.04 - CT14NNLO BHPS2 SEA2 $pp \rightarrow VH$ IC CT14NNLO 0.95 1.05 $pp \rightarrow t\bar{t}H$ 4.5 y(Z)1.05

- c-tagging can also be exploited to measure Z+c production at LHCb in Run-II (and Run-III)
- sensitive to intrinsic charm content of proton
- per-cent level effects on Higgs production cross-sections

Z + c

top production

- top production at LHCb acts as a sensitive probe of high-x gluon PDF [JHEP(2014)02:p. 126]
- low integrated luminosity, low acceptance limits statistical sensitivity
- first observation made in μb final state in Run-I [Phys. Rev. Lett.(2015)115:p. 112001]
 - measurement also made in μbb final state
- increase in centre-of-mass energy gives ${\sim}10$ increase in μeb final state
 - highest purity final state, highest precision
- measurement already underway with Run II data

W mass measurements

• precision measurement of the W mass from ATLAS [1701.07240 [hep-ex]]

 $-p_T^\ell$ fit dominates combination (86%)

- PDF uncertainty significant contribution to final uncertainty
- LHCb can perform measurement in p_T^ℓ mode (no missing energy for m_T)
- PDF uncertainties on measurements in the central and forward regions are anticorrelated
- LHCb can contribute to overall measurement [Eur. Phys. J.(2015)C75:p. 601]

 $\sin^2 \theta_W^{\text{eff.}}$

• enhanced $A_{\rm FB}$ at large rapidities gives LHCb most sensitivity to $\sin^2 \theta_{W}^{\rm eff}$ at the LHC

- most precise measurement at the LHC
 - statistically limited
- largest systematic uncertainty due to PDFs
- further constraints on PDFs ahead of Run II will give more precise result

conclusions and outlook

- measurements made so far by LHCb have had a significant impact on PDFs at high and low \boldsymbol{x}
- plenty of plans to make further measurements with data from Run-II (and Upgrade)
- more precise PDFs will also improve precision of measurements of m_W and $\sin^2 \theta_W$
- while we have no extensive experience of using xFitter within the collaboration so far, would be very happy to change that in the coming years
 - offers an excellent tool to study the potential of our data

backup

LHCb

- optimised to study \mathcal{CP} Violation in B and D decays at the LHC
- fully instrumented between $2.0 \leq \eta \leq 5.0$
- excellent tracking, PID and vertexing capabilities (muon id efficiency $\sim 98\%$)

precision luminosity at LHCb

- Iuminosity measured at LHCb using two methods: Van der Meer Scan (VDM) and Beam-Gas Imaging (BGI)
- beams scanned across each order in VDM scan to trace beam profile
- in BGI method neon injected in beam-pipe to reconstruct beams using collision vertices

- \bullet BGI and VDM methods combined to achieve precision of 1.7% in 2011 and 1.2% in 2012
- "the most precise luminosity measurement achieved so far at a bunched-beam hadron collider"

\boldsymbol{W} mass - PDF uncertainties

PDFs	Experiments	δ_{PDF} (MeV)	α
PDF4LHC(2-sets)	2×GPD	10.5	(0.26, 0.74, 0, 0)
PDF4LHC(2-sets)	$2 \times \text{GPD} + \text{LHCb}$	7.7	(0.30, 0.45, 0.21, 0.04)
PDF4LHC(3-sets)	2×GPD	16.9	(0.50, 0.50, 0, 0)
PDF4LHC(3-sets)	$2 \times \text{GPD} + \text{LHCb}$	12.7	(0.43, 0.41, 0.11, 0.04)
NNPDF30	2×GPD	5.2	(0.50, 0.50, 0, 0)
NNPDF30	$2 \times \text{GPD} + \text{LHCb}$	3.6	(0.35, 0.47, 0.16, 0.02)
MMHT2014	2×GPD	9.2	(0.45, 0.55, 0, 0)
MMHT2014	$2 \times \text{GPD} + \text{LHCb}$	4.6	(0.39, 0.14, 0.46, 0)
CT10	2×GPD	11.6	(0.33, 0.67, 0, 0)
CT10	$2 \times \text{GPD} + \text{LHCb}$	6.3	(0.38, 0.20, 0.40, 0.03)

- forward W production in association with high $p_{\rm T}$ jets sensitive to large-x PDFs
- differential charge asymmetry versus muon η is experimentally and theoretically clean

- pdf uncertainties dominant

- $\bullet\,$ LHCb measurements at a precision of 1% would reduce uncertainties on d-quark PDFs by 35% at high-x
- $\bullet\,$ also improvements in the gluon and u quark PDFs

 W_i