
# **QCDNUM Status and Plans**

Michiel Botje Nikhef, Amsterdam

xFitter users meeting

Oxford March 21, 2017

# **QCDNUM Program Structure**



Convolution tools, fast convolution engine

# Is QCDNUM fast?

- Mimic a fit by 1000 evolutions and 10<sup>6</sup> F<sub>2</sub> and F<sub>L</sub> calculations
  - VFNS NNLO on a 5-fold 100×60 x-Q<sup>2</sup> grid in the HERA kinematic range
  - MacBook Pro (2012) with 2.5 GHz Intel core i5 and 8 GB RAM
  - Code compiled with O3 optimisation and w/o array boundary check

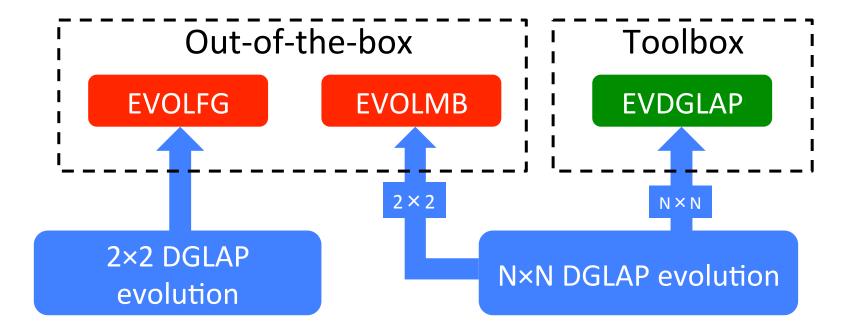
| 10 <sup>3</sup> evolutions | 2×10 <sup>6</sup> structure functions | total    |
|----------------------------|---------------------------------------|----------|
| 3.7 secs                   | 4.0 secs                              | 7.7 secs |

 Heavy quark contributions to F<sub>2,L</sub> with HQSTF take about the same CPU as the light quark structure functions with ZMSTF

Yes, QCDNUM is pretty fast

### **QCDNUM** Releases

Website
http://www.nikhef.nl/
user/h24/qcdnum


- <u>17-00/07</u>: Stable release
  - Bug fix in singlet time-like evolution (Feb 2016)

arXiv:1602.08383

- 17-01/13: Pre-release on the road to QCDNUM-18-00
  - Suite of toolbox routines for N-fold DGLAP evolution
  - Routine to copy toolbox pdf set to internal memory
  - Imported pdf sets can have pdfs beyond qluon and quarks
  - Can store pdf sets with different evolution parameters
  - QCDNUM steering with datacards
  - New very fast pdf interpolation routines
  - C++ interface (written by Valerio, not yet fully tested)
- Upcoming release 17-01/14
  - New out-of-the-box evolution routine (testversion)
  - First steps towards thread support via OpenMP

# Coming soon: QCDNUM-17-01/14

• EVOLMB: new out-of-the-box evolution routine



 EVOLMB is fully backward compatible with EVOLFG and will ultimately replace it

NB: N×N refers to the dimension of the splitting function matrix for N-fold evolution

#### **EVOLMB** versus **EVOLFG**

call EVOLMB(itype,func,def,iq0,epsi)

- EVOLMB has the same argument list as EVOLFG
  - itype now allows you to select the output pdf set
  - iq0 can be anywhere within the grid or cuts



### Output pdf set selection in EVOLMB

 Evolution type selection via itype allows for direct storage of evolved pdfs into any pdf set [1-24]

- Thus itype=52 stores polarised pdfs in set 5, etc.
- This provides an alternative to copying pdf set 1, 2, 3 to another set with PDFCPY

### Start scale in EVOLMB

- For <u>EVOLFG</u> the VFNS start scale <u>must</u> be below the charm threshold: evolution always starts at nf = 3
- For **EVOLMB** the VFNS start scale can be anywhere inside the grid: evolution can start at nf = 3, 4, 5, 6



- This allows for evolution with intrinsic heavy flavours
- Back-evolution of a heavy pdf over the threshold:
  - Subtract the discontinuity (if any) and set the heavy quark pdf to  $f(x, \mu_h)$  for all  $\mu \le \mu_h$  (with option to set f to zero)
- When you start the evolution at a threshold iqh:

```
iq0 = +iqh : start with nf above the threshold
iq0 = -iqh : start with nf below the threshold
```

#### Thresholds in EVOLFG and EVOLMB

| Scheme | nfix    | Thresholds                            |                                       |
|--------|---------|---------------------------------------|---------------------------------------|
| FFNS   | 3/4/5/6 | No flavour thresholds                 |                                       |
| VFNS 0 |         | iqc                                   | Boundary nf = 3/4                     |
|        | iqb     | Boundary nf = 4/5 must be iqb ≥ iqc+2 |                                       |
|        |         | iqt                                   | Boundary nf = 5/6 must be iqt ≥ iqb+2 |

#### Threshold settings in the VFNS

- EVOLFG evolution <u>must</u> start at nf = 3 so that the set of thresholds put inside the grid must always include iqc
- EVOLMB has no start point restriction so that one may put any single threshold, or any two consecutive thresholds, or all three thresholds



## New in EVOLMB: thread support

- At fixed nf, the 2nf singlet and nonsinglet evolutions can in principle be run in parallel (up to 12 evolutions)
- OpenMP directives are not yet implemented but by design EVOLMB should be thread-safe (EVOLSG is not)
- Proof of principle in MickeyMouse code: fake evolution of 6 pdfs distributed over 4 threads on my MacBook

```
PDF 1 NF 6 evolved up in thread 0
PDF 2 NF 6 evolved up in thread 0
PDF 3 NF 6 evolved up in thread 1
PDF 4 NF 6 evolved up in thread 1
PDF 5 NF 6 evolved up in thread 2
PDF 6 NF 6 evolved up in thread 3
```

Might become quite a CPU saver when it all works ...

#### **EVOLMB** issues after its first release

- QCDNUM plague: spline oscillation when back-evolving
  - Presently cured by iterative back-evolution
  - No problem when back-range is small < iqc for EVOLFG</li>
  - For EVOLMB the back-range is not restricted so that the iterative solution needs to be reviewed for large back-ranges
- QCDNUM feature: speed
  - EVOLMB is now about a factor of two slower than EVOLFG
  - Have to investigate timing & speedup of EVOLMB
- EVOLMB will replace EVOLFG when all this is resolved

# To come: QEDEVOL package

- QCDNUM QCD-QED is already implemented in xFitter and Renat sent me the standalone version of the code
- Turn this into a package with basically two routines:

QEDWGTS To be called instead of FILLWT

OEDEVOL To be called instead of EVOLFG

- To do in addition:
  - Provide C++ interface
  - Provide thread support
  - Provide small write-up
  - Include the package in the QCDNUM distribution with proper reference to Renat's work

# **QCDNUM todo list**

- Finalise EVOLMB and release QCDNUM-17-01/14
- And then, not in order of priority:
  - Turn Renats code into a QEDEVOL package
  - Implement cuts
  - Fully test C++ interface to QCDNUM
  - Improve numerical stability of backward evolution
  - More attention to OpenMP thread-safe code in QCDNUM
  - Toolbox: more flexibility through user-defined functions
  - Upgrade polarised and time-like evolution to NNLO