Dipole model analysis of highest precision HERA data, including very low Q^2 's

Agnieszka Łuszczak

Krakow University of Technology and DESY Hamburg

in collaboration with Henri Kowalski (DESY) and Sasha Glazov (DESY)

published in Phys.Rev.D95, 2017

xFitter Meeting in Oxford 19-22 March 2017, England

This work is supported by the Polish Ministry under program Mobilnosc Plus, no. 1320/MOB/IV/2015/0.

- Motivation: We analyse, within a dipole model, the final, inclusive HERA DIS cross section data in the low x region, using fully correlated errors.
- We show, that these highest precision data are very well described within the dipole model framework starting from very low Q^2 values of 0.3 GeV² to the highest values of $Q^2 = 250$ GeV².
- We discuss the saturation question and the properties of the gluon density obtained in this way.
- The analysis was done in the xFitter framework.

Outline

- Dipole model approach.
- GBW and BGK parametrization of dipole cross section.
- Results of the fits from BGK dipole model.
- Gluon density.
- Comparision with HERA data.
- Summary.

Dipole picture of DIS at small x in the proton rest frame

(

> r - dipole size

z - longitudinal momentum fraction of the quark/antiquark

Factorization: dipole formation + dipole interaction

$$\sigma^{\gamma p} = \frac{4\pi^2 \alpha_{em}}{Q^2} F_2 = \sum_f \int d^2 r \int_0^1 dz \, |\Psi^{\gamma}(r, z, Q^2, m_f)|^2 \, \hat{\sigma}(r, x)$$

Dipole-proton interaction $\hat{\sigma}(r, x) = \sigma_0 \left(1 - \exp\{-\hat{r}^2\}\right) \qquad \hat{r} = r/R_s(x)$

Dipole cross section

- BGK (Bartels-Golec-Kowalski) parametrization $\hat{\sigma}(r,x) = \sigma_0 \left\{ 1 \exp\left[-\pi^2 r^2 \alpha_s(\mu^2) x g(x,\mu^2)/(3\sigma_0)\right] \right\}$
- $\mu^2 = C/r^2 + \mu_0^2$ is the scale of the gluon density
- \mathbf{P} μ_0^2 is a starting scale of the QCD evolution. $\mu_0^2 = Q_0^2$
- gluon density is evolved according to the LO or NLO DGLAP eq.
- soft gluon:

$$xg(x,\mu_0^2) = A_g x^{\lambda_g} (1-x)^{C_g}$$

soft + hard gluon:

$$xg(x,\mu_0^2) = A_g x^{\lambda_g} (1-x)^{C_g} (1+D_g x + E_g x^2)$$

Dipole model BGK fit with fix valence quarks and without

Q^2_{min} [GeV ²]	$\sigma_0[mb]$	A_g	λ_g	C_g	N_{df}	χ^2	χ^2/N_{df}
3.5	$87.0\pm$	$2.32\pm$	$-0.056\pm$	8.21±	534	551.05	1.03
	8.9	0.009	0.11	0.80			
8.5	$72.36\pm$	$2.766 \pm$	$-0.042 \pm$	$6.543\pm$	448	452.48	1.01
	7.4	0.009	0.123	0.632			

Table 1: BGK fit with fixed valence quarks for σ_r for H1ZEUS-NC data in the range $Q^2 \ge 3.5$ or 8.5 GeV² and $x \le 0.01$. NLO fit. Soft gluon. $m_{uds} = 0.14, m_c = 1.3$ GeV. $Q_0^2 = 1.9$ GeV².

1.2 BGK NLO fit without valence quarks for σ_r for HERA1+2-NCep-460, HERA1+2-NCep-575, HERA1+2-NCep-820, HERA1+2-NCep-920 and HERA1+2-NCem in the range $Q^2 \geq 3.5$ GeV² and $Q^2 \geq 8.5$ and $x \leq 0.01$. Soft gluon.

No	Q^2	HF Scheme	σ_0	A_g	λ_g	Cg	cBGK	Np	χ^2	χ^2/Np
1	$Q^2 \ge 3.5$	RT OPT	85.111	2.075	-0.093	4.989	4.0	568	592.46	1.04
2	$Q^2 \ge 8.5$	RT OPT	123.31	1.997	-0.0975	4.655	4.0	482	479.37	0.99

Dipole model BGK fit with fitted valence quarks

1.3 BGK NLO fit with fitted valence quarks for σ_r for HERA1+2-NCep-460, HERA1+2-NCep-575, HERA1+2-NCep-820, HERA1+2-NCep-920 and HERA1+2-NCem in the range $Q^2 \geq 3.5$ GeV² and $Q^2 \geq 8.5$ and $x \leq 0.01$. Soft gluon.

No	Q^2	HF Scheme	σ_0	A_g	λ_g	Cg	cBGK	Np	χ^2	χ^2/Np
1	$Q^2 \ge 3.5$	RT OPT	85.111	1.921	-0.103	4.674	4.0	557	575.30	1.03
2	$Q^2 \ge 8.5$	RT OPT	93.581	1.665	-0.124	6.066	4.0	473	476.71	1.01

HERAPDF fit with fitted valence quarks

1.4 HERAPDF NLO fit with fitted valence quarks for σ_r for HERA1+2-NCep-460, HERA1+2-NCep-575 HERA1+2-NCep-820, HERA1+2-NCep-920, HERA1+2-NCem, HERA1+2-CCep and HERA1+2-CCem data in the range $Q^2 \ge 3.5$ and $Q^2 \ge 8.5$ and $x \le 1.0$.

No	Q^2	HF Scheme	Np	χ^2	χ^2/Np
1	$Q^2 \ge 3.5$	RT	1131	1356.70	1.20
2	$Q^2 \ge 8.5$	RT	456	470.88	1.15

HERAPDF fit with fix valence quarks, soft gluon

HERAPDF NLO fit with fix valence quarks for σ_r for HERA1+2-NCep-460, HERA1+2-NCep-575 HERA1+2-NCep-820, HERA1+2-NCep-920, HERA1+2-NCem data in the range $Q^2 \geq 3.5$ and $x \leq 0.01$.

No	Q^2	HF Scheme	Np	χ^2	χ^2/Np
1	$Q^2 \ge 3.5$	RT	534	572.69	1.07

HERAPDF fit with fix valence quarks, soft + hard gluon

HERAPDF NLO fit with fix valence quarks for σ_r for HERA1+2-NCep-460, HERA1+2-NCep-575 HERA1+2-NCep-820, HERA1+2-NCep-920, HERA1+2-NCem data in the range $Q^2 \geq 3.5$ and $x \leq 0.01$.

No	Q^2	HF Scheme	Np	χ^2	χ^2/Np	
1	$Q^2 \ge 3.5$	RT	532	564.80	1.06	

Results of the Fits

• $m_{u,d,s} = 140 \ MeV$, $m_c = 1.3 \ GeV$

 $\hat{\sigma}(r,x) = \sigma_0 \left\{ 1 - \exp\left[-\pi^2 r^2 \alpha_s(\mu^2) x g(x,\mu^2)/(3\sigma_0)\right] \right\}$ with saturation

Q_{min}^2 [GeV ²]	$\sigma_0[mb]$	A_g	λ_g	Cg	Dg	Eg	N_{df}	χ^2	χ^2/N_{df}
3.5	$77,6\pm 18,6$	2.6166 ± 0.158	-0.0636± 0.0087	37.114 ± 5.057	$\frac{3.0597 \pm 6.510}{6.510}$	1406.4 ± 552.65	532	534.17	1.00
8.5	63.5 ± 18.5	2.112± 0.101	-0.0541± 0.0065	21.341 ± 4.062	$\frac{1.098 \pm 5.764}{5.764}$	$\frac{867.23\pm}{423.67}$	448	439.04	0.98

• $\hat{\sigma}(r,x) = \sigma_0 \left[\pi^2 r^2 \alpha_s(\mu^2) x g(x,\mu^2) / (3\sigma_0) \right]$ without saturation

Q^2_{min} [GeV ²]	A_g	λ_g	Cg	Dg	Eg	Ndf	χ^2	χ^2/Np
3.5	$2.3313\pm$	$-0.0936 \pm$	$14.762 \pm$	$9.802 \pm$	$-99.503 \pm$	533	556.17	1.04
	0.100	0.0056	11.546	14.668	74.830			

Gluon density

Gluon density

• The differences are disappearing at larger Q^2 .

Comparision with HERAI+II data

Comparision with HERAI+II data

Summary

- BGK dipole fits (with saturation) describe the final, high precision HERA data with x < 0.01, very well: $\chi^2/Np \rightarrow 1$.
- Little sensitivity to valence quarks contribution observed.
- Gluon density from the dipole models is higher than the PDFs gluon at low Q^2 .
- The extrapolation to the very low Q^2 region shows a sizable overshoot. This indicates that at very low Q^2 saturation effects of the eikonal approximation are too small.
- The fit in the whole Q^2 region, $0.3 < Q^2 < 250$ GeV² is only slightly better than in the extrapolated case. The systematic overshoot of the fits over data remains.
- The χ^2/N_{df} in the region: $0.3 < Q^2 < 250 \text{ GeV}^2$ is sizably higher than in the fits in the region $3.5 < Q^2 < 250 \text{ GeV}^2$, $\chi^2/N_{df} = 1.21$, with the saturation ansatz and $\chi^2/N_{df} = 1.52$ without the saturation ansatz.
- In the lower $Q^2 < 3.5$ GeV² range the saturated ansatz of the gluon density seems to be prefered.

Dipole scattering amplitude with GBW parametrization

SBW parametrization with heavy quarks f = u, d, s, c

 $\hat{\sigma}(r,x) = \sigma_0 \left(1 - \exp(-r^2/R_s^2) \right), \qquad R_s^2 = 4 \cdot \left(x/x_0 \right)^{\lambda} \, \mathrm{GeV}^2$

The dipole scattering amplitude in such a case reads

$$\hat{N}(\mathbf{r}, \mathbf{b}, x) = \theta(b_0 - b) \left(1 - \exp(-r^2/R_s^2)\right)$$

where

$$\hat{\sigma}(r,x) = 2 \int d^2 b \, \hat{N}(\mathbf{r},\mathbf{b},x)$$

Parameters b_0 , x_0 and λ from fits of \hat{N} to F_2 data

$$\lambda = 0.288$$
 $x_0 = 4 \cdot 10^{-5}$ $2\pi b_0^2 = \sigma_0 = 29 \text{ mb}$