Displacement of Thresholds in xFitter¶

V. Bertone, R. Placakyte, V. Radescu, E. Godat, F. Lyonnet, F. Olness & xFitter collaborators

What is the idea???

Impact of heavy quark matching scale dependence in global PDF fits

APFEL has a new feature

We can adjust the matching scale for the heavy quark PDF transition

What are the benefits?

- 1) avoid discontinuities in the middle of data sets
- 2) avoid delicate matching in region $\mu \sim m_{c,b}$

Impact of heavy quark matching scale dependence in global PDF fits

What are the benefits?

- 1) avoid discontinuities in the middle of data sets
- 2) avoid delicate matching in region $\mu{\sim}m_{c,b}$

NLO Matching Condition

$$f_b^5(x,\mu) = \left(\frac{\alpha_S}{2\pi}\right) \left[P_{1,0} + P_{1,1}\log\left(\frac{\mu^2}{m_b^2}\right)\right] \otimes f_g^4(x,\mu)$$
 Leading Order Contribution

Delicate cancellation in $\mu \sim m_{c,b}$ region for VFNS

SOLUTION: shift heavy quark matching scale

We can adjust the matching scale for the heavy quark PDF transition

APFEL Features

Ability to adjust matching scale $\mu_{c,b}$

Need to compute proper boundary conditions at NLO/NNLO

The matching conditions are non-trivial

NLO Matching Condition

$$f_b^5(x,\mu) = \left(\frac{\alpha_S}{2\pi}\right) \left[P_{1,0} + P_{1,1} \log\left(\frac{\mu^2}{m_b^2}\right)\right] \otimes f_g^4(x,\mu)$$
Zero at Leading Order
Leading DGLAP contribution

The matching conditions are non-trivial, especially at NNLO

Bottom $m_b \times 1$, 1.4, 1.8, 2.2, 2.6

Dataset	σαιραισι	σαιραίσ2	outputos	σαιραιστ	outputos	
Beauty cross section ZEUS Vertex	12 / 17	14 / 17	13 / 17	12 / 17	12 / 17	
Charm cross section H1-ZEUS combined	49 / 47	49 / 47	50 / 47	50 / 47	50 / 47	
HERA1+2 CCep	48 / 39	48 / 39	48 / 39	48 / 39	48 / 39	
HERA1+2 CCem	55 / 42	55 / 42	56 / 42	56 / 42	57 / 42	
HERA1+2 NCem	223 / 159	223 / 159	222 / 159	222 / 159	222 / 159	
HERA1+2 NCep 820	71 / 70	69 / 70	69 / 70	70 / 70	70 / 70	
HERA1+2 NCep 920	439 / 377	439 / 377	436 / 377	433 / 377	432 / 377	
HERA1+2 NCep 460	222 / 204	222 / 204	222 / 204	222 / 204	222 / 204	
HERA1+2 NCep 575	219 / 254	218 / 254	218 / 254	218 / 254	218 / 254	
CMS W- cross section 8 TeV	0/11	0 / 11	0/11	0/11	0/11	
CMS W+ cross section 8 TeV	0/11	0/11	0/11	0/11	0/11	
H1 F2 Beauty Vertex	3.2 / 12	3.9 / 12	3.5 / 12	3.4 / 12	3.3 / 12	
ATLAS low mass Z rapidity 2011	30 / 6	30 / 6	31 / 6	31 / 6	32/6	
ATLAS peak CC Z rapidity 2011	19 / 12	20 / 12	21 / 12	22 / 12	23 / 12	
ATLAS peak CF Z rapidity 2011	10/9	10/9	10/9	10/9	10/9	
ATLAS high mass CC Z rapidity 2011	6.2 / 6	6.3 / 6	6.3 / 6	6.4 / 6	6.4 / 6	
ATLAS high mass CF Z rapidity 2011	3.8 / 6	3.9 / 6	3.9 / 6	3.9 / 6	3.9 / 6	
ATLAS W- lepton rapidity 2011	16 / 11	17 / 11	17 / 11	18 / 11	18 / 11	
ATLAS W+ lepton rapidity 2011	13 / 11	13 / 11	13 / 11	13 / 11	13/11	
Correlated χ^2	140	145	148	150	$\Delta \chi^2 \sim 1$	1
Log penalty χ^2	-4.98	-5. <i>7</i> 5	-5.62	-5.20		4
Total χ^2 / dof	1579 / 1290	1588 / 1290	1588 / 1290	1589 / 1290	1593 / 1290	
χ^2 p-value	0.00	0.00	0.00	0.00	0.00	g _
ATLAS high mass CC Z rapidity 2011	6.6 / 6	6.6 / 6	6.6 / 6	6.6 / 6	6.6 / 6	
ATLAS high mass CF Z rapidity 2011	4.3 / 6	4.3 / 6	4.3 / 6	4.3 / 6	4.3 / 6	
ATLAS W- lepton rapidity 2011	13 / 11	14 / 11	14 / 11	14 / 11	14 / 11	
ATLAS W+ lepton rapidity 2011	13 / 11	13 / 11	13 / 11	13 / 11	12 / 12	
Correlated χ^2	164	166	167	167	$\Delta \chi^2 \sim 5$	
Log penalty χ^2	-2.96	-3.34	-3.67	-3.94	70	
Total χ^2 / dof	1639 / 1290	1644 / 1290	1645 / 1290	1644 / 1290	1644 / 1290	
χ^2 p-value	0.00	0.00	0.00	0.00	0.00	Round

Bottom $m_b \times 1$, 1.4, 1.8, 2.2, 2.6

Dataset	12 / 17	04174102	0011100	0011101	001170100
NLO	14 / 17	13 / 17 N	12 / 17 NLO	12 / 17	
10 20 30 40	50	1670 1660 1650	10	20 30	40
ATLAS Ingit mass Cr 2 Tapicity 2011 ATLAS W- lepton rapidity 2011 ATLAS W+ lepton rapidity 2011	3.6 / 0 16 / 11 13 / 11	3.57 0 17 / 11 13 / 11	3.57 0 17 / 11 13 / 11	3.5/ 0 18/11 13/11	3.57 0 18 / 11 13 / 11
Correlated χ^2 Log penalty χ^2	140 -4.98	145 -5.75	148 -5.62	150 -5.20	$\Delta \chi^2 \sim 1$
Total χ^2 / dof χ^2 p-value	1579 / 1290 0.00	1588 / 1290 0.00	1588 / 1290 0.00	1589 / 1290 0.00	1593 / 1290 0.00
ATLAS high mass CC Z rapidity 2011 ATLAS high mass CF Z rapidity 2011 ATLAS W- lepton rapidity 2011 ATLAS W+ lepton rapidity 2011 Correlated χ^2	6.6/6 4.3/6 13/11 13/11 164	6.6 / 6 4.3 / 6 14 / 11 13 / 11 166	6.6 / 6 4.3 / 6 14 / 11 13 / 11 167	6.6 / 6 4.3 / 6 14 / 11 13 / 11 167	6.6/6 4.3/6 14/11 $\Delta \chi^{2} \sim 5$
Log penalty χ^2 Total χ^2 / dof	-2.96 1639 / 1290	-3.34 1644 / 1290	-3.67 1645 / 1290	-3.94 1644 / 1290	1644 / 1290
χ^2 p-value	0.00	0.00	0.00	0.00	0.00

NLO Fit prefers matching in the region $\mu_c \sim m_c$

Suggests that higher order logs (resumed by DGLAP) are important

Experiments: Hi Precision HERA920 & H1-ZEUS Charm

Charm

NLO Fit prefers matching in the region $\mu_b \sim m_b$

Suggests that higher order logs (resumed by DGLAP) are important

Experiments: Hi Precision HERA920 & H1-ZEUS Beauty

Bottom

Try HERA only

Zoom in Q range

HERA Kinematic coverage

If we have constraints across a wide Q range:

At NLO, need to match near $\mu_{c,b} \sim m_{c,b}$

VFNS w/ DGLAP resums higher logs; these are important

At NNLO, we have greater freedom where to match $\mu_{c,b}$

We can use this freedom to avoid

- i) discontinuities in the middle of data sets
- ii) delicate cancellations near $\mu_{c,b} \sim m_{c,b}$

If we DON'T have constraints across a wide Q range:

We have greater freedom where to match $\mu_{c,b}$

But, we DO have to transition eventually

One more idea

Provides some of the benefits & flexibility of displaced matching, but with a compromise.

Disadvantages:

Match at $\mu_{c,b} \sim m_{c,b}$, but switch at higher scale

How much do we "lose" in χ^2 ???

Advantages:

- * avoid discontinuities in data
- * avoid delicate cancellations and
- * minimal set of PDF grids

The End

is near

APFEL has a new feature

We can adjust the matching scale for the heavy quark PDF transition

What are the benefits?

- 1) avoid discontinuities in the middle of data sets
- 2) avoid delicate matching in region $\mu \sim m_{C,b}$

In a broader sense ...

- 1) flexibly interpolate between VFNS and FFNS
- 2) answer many outstanding theoretical debates with numerical results!!!

