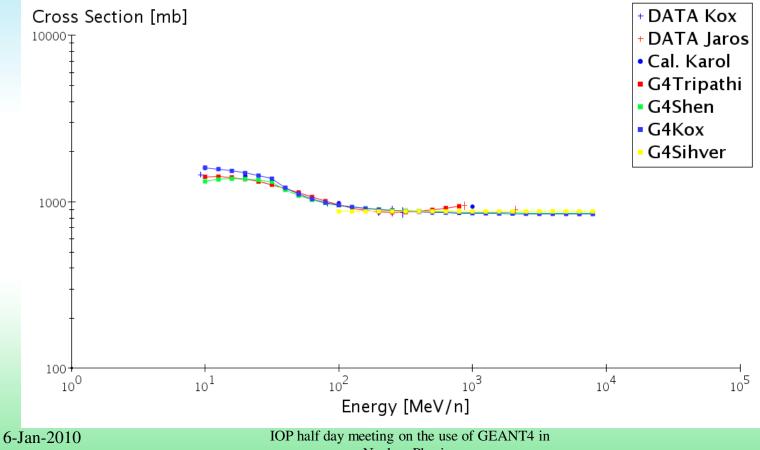
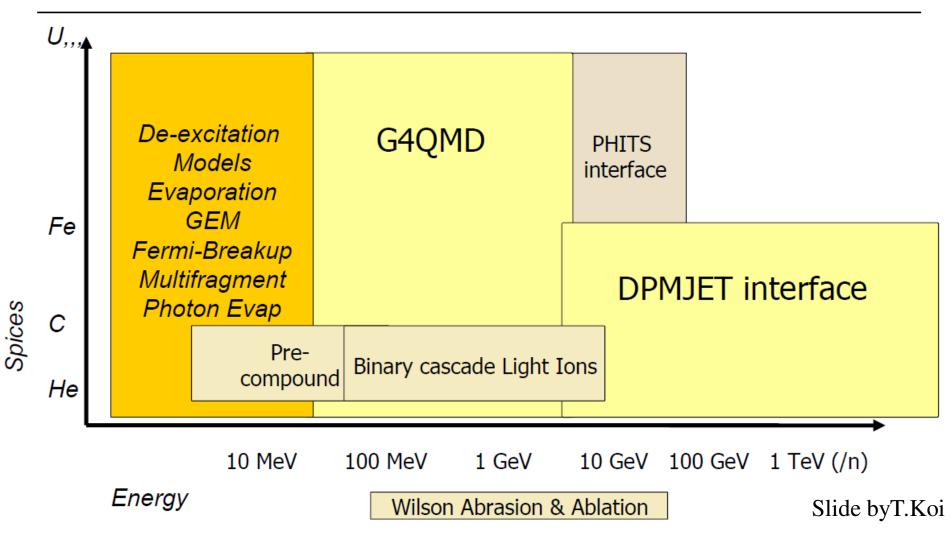
Hadronic Physics II

Geant4 Users' Tutorial CERN 15-19 February 2010 Gunter Folger


Content

- Ion Hadronic Interactions
 - Low energy: medical research
 - High energy: space applications
- Radioactive decay
- Isotope production

Ion Interactions


- Inelastic Nucleus nucleus
 - Cross sections
 - Parameterisations from Tripathi, Shen, Kox and Sihver
 - Final state
 - Binary light ion cascade
 - QMD (since 9.2)
 - INCL/ABLA (since 9.2)
 - Wilson Abrasion/Ablation
 - Electromagnetic dissociation
 - Interface to DPMJet at high energies
- Radioactive decay

Inelastic Cross section C12-C12

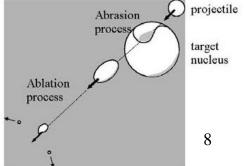
Nuclear Physics

Ion Models Inventory

Binary Light Ion cascade

- Binary Light ion cascade is extension to Binary cascade
 - Light nucleus is modeled as a set of independent particles tracked simultanously through the heavy nucleus using Binary cascade
 - May swap projectile and target nucleus
 - De-excitation of heavy nucleus handled by pre-compound model
 - At interaction, Fermi momentum and binding is taken into account
 - Unscattered nucleons of light nucleus form fragment, excitation energy estimated by hit nucleons, fragment undergoes deexcitation
- Validity: 0-10 GeV/nucleon, light nucleus

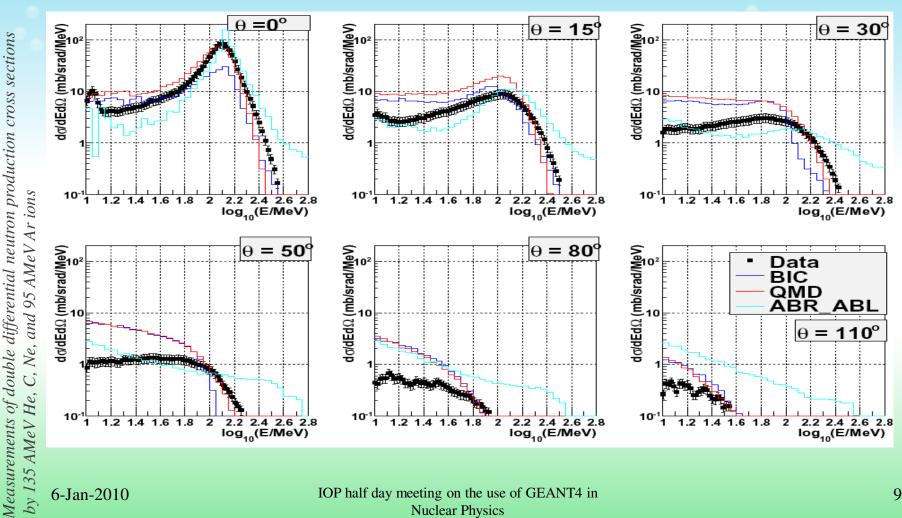
Quantum Molecular Dynamics


- Quantum Molecular Dynamics is quantum extension of classical molecular-dynamics model.
 - Each nucleon is seen as a Gaussian wave packet
 - Propagation with scattering term taking into account Pauli blocking
 - QMD model is widely used to analyze various aspects of heavy ion reactions.
 - Nuclear fragments de-exciated using GEM evaporation
- Validity: 0-10 GeV/nucleon

Geant4 Wilson Abrasion/Ablation

• Abrasion is simplified macroscopic model based largely on geometric arguments

– Faster


- Validity range 70 MeV/nucleon 10 GeV/nucleon
- Ablation models nuclear de-excitation, following NUCFRG2 (NASA TP 3533)

Ion model results

 $C + C \rightarrow n + X$ at 135 MeV/nucleon

054607 (2001)

4

Rev.

Phys.

Data: H.Sato et

Electromagnetic Dissociation

- Liberation of nucleons or nuclear fragments as a result of electromagnetic field
 - exchange of virtual photons, rather than the strong nuclear force
 - important for relativistic nuclear-nuclear interaction, especially for high Z nuclei
- G4EMDissociation model and cross section are an implementation of the NUCFRG2 (NASA TP 3533) physics
- Validity: 0 < E < 100 TeV

Interface to DPMJet-II.5

• DPMJet is external code

- 5 GeV/nucleon to very high energies (1 PeV/nuc)
- Applicable to all nuclei as projectile and target
- Models prompt, high energy part of interaction
- Geant4 provides interface to DPMJet-II.2
 - Nuclear de-excitation using G4Precompound
 - User can override this
- DPMJet requires Glauber profile data
 - Integral probability function used to sample impact parameter
 - Current set up to A=58, for both projectile and target
- Work in progress

Radioactive Decay

- Decay of radioactive nuclei by α, e⁻, e⁺, or electron capture from K and L shell.
 - Followed by gamma de-excitation
- Radioactive daughter products are decayed, ie decay chains are handled
- Data derived from Evaluated Nuclear Structure Data File (ENSDF)
 - Nuclear half-lives, level structure, nuclear decay branching ratio, Q-value of decays
- Biasing techniques available
 - Decay time distributions function can be supplied
 - Splitting prior to decay
 - Biasing of branching ratios

Isotope production model

- Low energy (< 100 MeV) proton/neutron induced isotopeproduction
 - parasitic to the transport models.
 - Data driven model, using data IsotopeProduction data in G4NDL

Exercise 5.b

• Compare hadronic and EM showers