

TPC analysis jamboree La Clarté-Dieu, Orsay

Not a summary,
Not really conclusions,
Most of all some remarks and questions

Program (quite flexible) with aim for many discussions

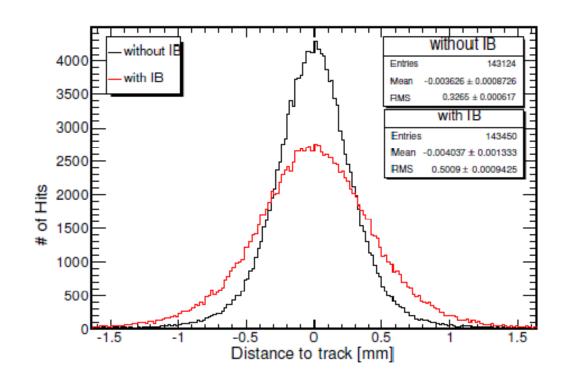
- Monday 11 May, afternoon: status reports Alice, PID with T2K, PANDA, ILC LP tests with Micromegas and GEM
- Tuesday 12 May: mostly gas gain fluctuations
- Wednesday 13 May: mostly ion feedback (+gating), space charge, distortions
- Thursday 14 May: distortions+corrections
- Miscellaneous:
 Gridpix analysis, reconstruction methods, laser calibration

Bringing different communities together

- Alice, ILC, PANDA, T2K, (bit of STAR?)
- Unfortunately several people could not come
- We learned quite a bit from each other (and have to study better further details)
- Follow up (at least for LCTPC collaboration):
 - more regular (shorter) analysis meetings say 0.5-1 day by "phone"?
 - jamboree-like, once per year?
- Should we further "institutionalise" a collaboration?
- Many thanks to Paul for the organisation

Re: pixel readout

gas	E_{drift} (V/cm)	$v_{drift} \exp{(\text{cm}/\mu\text{sec})}$	v_{drift} measured (cm/ μ sec)
Ar 3% CF ₄ 2% IsoBut	200	7.5	4.3 ± 0.4
${\rm Ar} \ 30\% \ {\rm CO}_2$	470	1.2	1.2 ± 0.1
$\mathrm{Xe}\ 30\%\ \mathrm{CO}_2$	1000 / 1400 /1900	$1.9 \ / \ 3.5 \ / \ 5$	$1.9 \pm 0.2 / 3.4 \pm 0.3 / 4.9 \pm 0.5$
He 20% IsoBut	560	2.1	2.2 ± 0.2
Ar 20% IsoBut	600	4.3	4.4 ± 0.4


$$res^2 = \frac{pixel^2}{12} + D_t^2 z$$

For single-electron hits; $N_{eff} = 1$

gas	E_{drift} (V/cm)	$D_t \exp (\mu \mathrm{m}/\sqrt{\mathrm{cm}})$	D_t measured $(\mu \text{m}/\sqrt{\text{cm}})$	$\sigma_{xy,0} \; (\mu \mathrm{m})$
Ar 3% CF ₄ 2% IsoBut	200	290	138 ± 2.5	35 ± 11
$Ar 30\% CO_2$	470	148	80 ± 2	24 ± 7
$Xe 30\% CO_2$	1000	185	40 ± 8	30 ± 15
$Xe 30\% CO_2$	1400	103	134 ± 3	23 ± 11
$\mathrm{Xe}\ 30\%\ \mathrm{CO}_2$	1900	110	171 ± 4	17 ± 14
$\mathrm{He}\ 20\%\ \mathrm{IsoBut}$	560	175	176 ± 2	27 ± 14

Re: influence from ion backflow

Martin Killenberg, ILC TPC

Spatial Resolution

Significantly reduced spatial resolution for high gas gain (\sim 20.000)

- ΔE < 50 V/cm (20%)(in PANDA case few V/cm)
- 300 $\mu m \rightarrow 500 \mu m$
- gain ~ 20,000
- what was ion feedback fraction?
- why only 300 µm without IB?
- huge effect, especially if resolution w.o. IB will be 100 µm or less

Can we make comparison between ILC sim. and Alice distortion calcs.?

Re: single-point resolutions

- ILC aims for 100 μm or less over 2.5 m drift length (with 3.5-4T B-field)
 - $\rightarrow \Delta (1/p_t) \sim 10^{-4}$ from TPC alone
 - which probably means understanding the distortions at the level 10-20 µm
- PANDA: 300 μm; 1-3% @ 1 GeV
- Alice: 300-500 μm
 - $\rightarrow \Delta (1/p_t) \sim 5 \times 10^{-3} \quad 5\% @ 10 \text{ GeV}$

See you next time!