TPC reconstruction methods for the ILC

#### Martin Killenberg



3. TPC Analysis Jamboree Orsay, 12. May 2009



## Overview



## Track Finding

- Topological Track Finder
- Hough Transform
- Kalman Filter
- 2 Background in the TPC
- The Bunch Train Problem

## Track Fitting

- Track Seeding
- $\chi^2$ -Minimisation
- The Likelihood Fitter
- Kalman Filter

#### N.B. This talks will focus on MarlinTPC.

LEP-Tracking (wrapped Fortran code) used in Particle Flow analyses is not considered.

universität

# Topological Track (and Hit) Finding

Search for contiguous areas on the pad plane

- + Independent of trajectory, not track hypothesis
- + Works in 3D
- + Fast and robust algorithm
- No seed parameters for track fit
- No separation of crossing tracks (yet)





# Topological Track (and Hit) Finding

Search for contiguous areas on the pad plane

- Independent of trajectory, + not track hypothesis
- Works in 3D
- Fast and robust algorithm +
- No seed parameters for track fit \_
- No separation of crossing tracks (yet) -





# Hough Transform



Example: Straight line (currently implemented)

- Track parametrisation:  $y = a \cdot x + b$
- Hough space:  $b = y x \cdot a$
- Each hit (*xy* pair) corresponds to one line in parameter space.
- All parameter space lines intersect in one points, corresponding to the *ab* pair representing the track.



# Hough Transform Algorithm



- Fill histogram (one b for each a per hit)
- Search for maximum
- Multiple tracks  $\rightarrow$  multiple maxima
  - Start with absolute maximum
  - Remove all hits from found track
  - Search for next maximum
  - . . .
- + Runs on 2D (3D) hits  $\Rightarrow$  Independent from (pad) geometry
- + Multi track capable
- + Initial track parameters for track fit
- Bad double track separation
- Performance depends on histogram cell size
- Huge, multi-dimensional "histograms" for 3D helix parametrisations

iversitat

# Hough Transform Algorithm



- Fill histogram (one b for each a per hit)
- Search for maximum
- Multiple tracks  $\rightarrow$  multiple maxima
  - Start with absolute maximum
  - Remove all hits from found track
  - Search for next maximum
  - . . .
- + Runs on 2D (3D) hits  $\Rightarrow$  Independent from (pad) geometry
- + Multi track capable
- + Initial track parameters for track fit
- Bad double track separation
- Performance depends on histogram cell size
- Huge, multi-dimensional "histograms" for 3D helix parametrisations

iversitat



Improved version of a *track following* algorithm.

- Starts from a track seed
- Predicts hit in next layer (pad row)
- Includes found hit in track parameters to improve next prediction
- + Combined track finding and fitting
- + Can include detector material (dE/dx and multiple scattering)
- Requires track seed + covariance matrix



## Background in the TPC



Background from 100 bunch crossings:





## Properties of micro curlers:

- Low energetic particles spiral up.
- Some pads are *blind* for a long time (up to 60 µs).
- Only relatively few pads are affected.

## Issues to discuss:

#### Data reduction

Suppress micro curlers on the front end electronic: All channels that see a continuous signal over  $\mathcal{O}(\mu s)$  are ignored.

#### • Pattern recognition and track fitting

No real problem for the pattern recognition, but both should be aware which channels were blind.





2625 Bunches

- $\Rightarrow$  One large picture of the bunch train
- $\Rightarrow$  Data from  $\mathcal{O}(150)$  bunch crossings simultaneously in the TPC
- $\Rightarrow$  *z*-position is ambiguous to  $\pm n \cdot v_{\rm drift} \cdot t_{\rm BX}$

#### Front end electronics can

either store the hole bunch train, read out in 199 ms pause

or ship each pulse asynchronously

The data structure has to be adapted.

# The Bunch Train Problem (2)

Problem: Marlin is event based.

Two solutions

- Store complete bunch train in one event
  - + All information available in event, existing algorithms can be used
  - Very large event, only 150 bunch crossings can contribute
- Store data at end plate for each bunch crossing
  - + Only relevant data kept in memory
  - Data from several "events" have to be combined, algorithms have to be adapted

MarlinTPC digitisation can produce both types of data. Reconstruction can only handle first type.

Not addressed yet: Matching TPC track with the correct bunch crossing

- Matching with inner tracker and / or calorimeter
- Influence of possible confusions on tracking efficiency / resolution



# Track Seeding

The track seeders provide starting values for numerical fits.

#### Simple track seeder

• Approximate helix projection as circle through 3 points

## Linear regression (straight tracks only)

• Calculate track parameters analytically

#### Track seeder

- Transform helix parameters to linearise problem
- Calculate parameters using regression
- If errors are included this could be used as analytical track fitter.







 $\chi^2$ -Minimisation

Numerical minimisation of  $\chi^2$ -Function:

$$\chi^2 = \sum_{i} \left( \frac{\operatorname{res}_{i,xy}^2}{\sigma_{i,xy}^2} + \frac{\operatorname{res}_{i,z}^2}{\sigma_{i,z}^2} \right)$$

Methods to calculate residuals:

- Along pad row
- Along coordinate axes
- Perpendicular to the track
- + "bread and butter" algorithm
- +  $\chi^2$  is simple quality test for the fit
- may require inversion of large matrices
- needs pad response corrections





 $\chi^2$ -Minimisation

Numerical minimisation of  $\chi^2$ -Function:

$$\chi^2 = \sum_{i} \left( \frac{\operatorname{res}_{i,xy}^2}{\sigma_{i,xy}^2} + \frac{\operatorname{res}_{i,z}^2}{\sigma_{i,z}^2} \right)$$

Methods to calculate residuals:

- Along pad row
- Along coordinate axes
- Perpendicular to the track
- + "bread and butter" algorithm
- +  $\chi^2$  is simple quality test for the fit
- may require inversion of large matrices
- needs pad response corrections







# The Likelihood Fitter

- The pad response can only be calculated correctly if angle of track wrt. pad row is known.
- This cannot be done only on hit basis
- $\Rightarrow$  Do it globally for the whole track
  - Calculate likelihood of charge distribution per pad row, assuming Gaussian distribution
  - Sum up log(likelihood) on all pad rows
  - Maximise the global log(likelihood)
- + Includes gain fluctuations
- + Can include distortions due to field inhomogeneities
- + Reproduces original track very well
- Time consuming numerical calculations
- Numerical stability depends on correct calibration parameters







# Kalman Filter

Filter calculates *state vector* of a dynamical system for a given "time"<sup>1</sup>.

State vector in a detector layer:

- Position (two parameters)
- Direction (two parameters)
- Curvature (one parameter)

Steps:

- Prediction: Extrapolate the hit
- Filtering: Include the current measurement
- Smoothing: Propagate backwards to the previous measurements
- + No inversion of large matrices
- + Multiple scattering can be included
- + Easy to remove single hits (outliers)
- Requires track seed + covariance matrix

<sup>1</sup>time in this context means "layer" or "pad row"





# Summary



#### • Track finding algorithms

- Topological track finder
- Hough Transform
- Kalman Filter

#### • Track fitting algorithms

- Analytical methods
- Numerical  $\chi^2$  minimisation
- Likelihood fit
- Kalman filter

#### Special issues

- Background (micro curlers)
- Event overlay
- Existing algorithms mainly for prototype data
  - No kink finding
  - No dE/dx effects on track
  - Test performance in Particle Flow algorithms