The PANDA TPC software framework Reconstruction & Results

Felix Böhmer

Physik Department E18 Technische Universität München

TPC Jamboree Orsay, France, May 2009

- Tracking Overview: The GENFIT generic fitting package
 - ► Example of working reconstruction: Momentum resolution in the TPC

2 Space-charge Corrections

- 3 Track Deconvolution
 - Event Time Reconstruction
 - Example of Pattern Recognition in a crowded TPC

Tracking Overview

GENFIT is a "home-made", generic fitting package for the PANDA experiment

- Written by Sebastian Neubert and Christian Höppner (TUM, E18)
- Main concept: flexibility

Key features:

- Heart: custom-made Kalman filter, independent of
 - Track representation
 - Hit geometry (detector)
- Versatile
- Default track representation (propagation): GEANE

The GENFIT Kalman filter

- Unlike common fitting packages the Kalman filter is independent of the detector geometry
- Concept: The detector hits know the planes they live in
- Perfect for the TPC: each space-point hit gives back its own virtual detector plane to the Kalman filter

Figure: Schematic of the working principle of GENFIT

- Example of working reconstruction in the TPC: Momentum resolution studies
- Simulation input:
 - For each bin (momentum, angle): 5000 pion events, uniform in ϕ
 - MC modeling: Box Generator, GEANT3 ALICE
 - Full digitization (see talk yesterday)
- Reconstruction using GENFIT and TPC hits only
- Idealized case: No space-charge distortions present!

• For each bin fit the distribution of reconstructed momenta *p*_{rec} with Gaussian:

Figure: Methodology of momentum resolution studies

TPC Momentum Resolution III

Figure: Momentum Resolution for the TPC alone

Using the semi-analytical expression for curvature error (see PDG book)

$$\delta k_{res} = rac{arepsilon}{L^2} \sqrt{rac{720}{N+4}}$$

these results correspond to a spatial resolution of \sim 300 μ m, proving consistency

Space-charge Corrections

Space-charge Simulation Input Reloaded

Input quantity for the digitization: Deviation Map

Figure: Final drift distortions (in ϕ) as function of the volume coordinates (cm)

Read in by the Drifter during digitization

The Laser Mesh

- To be able to correct for this effect, drift distortions have to be measured
- One way to do this (e.g. STAR TPC) are laser tracks in the chamber
- We have implemented a possible mesh of laser tracks on simulation level:

Figure: Side view of laser mesh

Figure: Top view of laser mesh

- A special reconstruction task tries to connect the reconstructed hits on the readout to the known laser-mesh
 - ----> Direct measurement of the drift distortions
- Only very few cuts are applied to reduce the effect of false hit-track matching

Figure: Top view of reconstructed laser hits in deviation map coordinates

- A special reconstruction task tries to connect the reconstructed hits on the readout to the known laser-mesh
 - ----> Direct measurement of the drift distortions
- Only very few cuts are applied to reduce the effect of false hit-track matching

Figure: Side view of reconstructed laser hits in deviation map coordinates

Spline-Fitting I

- The obtained raw results require fitting and smoothing
- For this purpose a least square bi-cubic spline fitting algorithm has been implemented
- Principle:
 - Create mesh λ_i , μ_j of points over the data area
 - At each point elementary B-Splines $M_i(x)$, $N_j(y)$ are attached:

► The complete spline has the defined representation

$$s(x, y) = \sum_{i=1}^{h+4} \sum_{j=1}^{k+4} \gamma_{ij} M_i(x) N_j(y) \stackrel{!}{=} f_r$$

► Fitting problem becomes problem of determining the coefficients *γ_{ij}* for the data-points *f_r* (*r* = 1...*m*)

Spline-Fitting II

- This can be written in matrix form: A γ = f where A is a matrix with *m* rows and (h + 4)(k + 4) columns.
- If the data points are sorted in x (y), the matrix A has band structure
- The matrix equation can be solved by inverting or (more stably) by using Householder Transformations, which takes advantage of the band structure

Figure: Spline fit of laser reconstruction data; Knots: 5, 3 on the data area. \sim 22000 data points, fit time \sim 3 seconds

Felix Böhmer (TUM E18)

Spline-Fitting Analysis

- Original map implemented as linear interpolation between calculated points
- Either:
 - · Compare with this lin. int. at cost of bigger errors between the points
 - Compare with spline fit of orig. DevMap
- Choice: comparison with Spline Fit of orig. map

Figure: Absolute difference between reconstructed deviation map (Spline) and original map (Spline)

• Reconstruction of the original map within \sim 200 μ m precision

Felix Böhmer (TUM E18)

TPC software status

- We are able to reproduce the input deviation map
- By shifting the reconstructed data into the coordinates of the measured hits we can immediately correct any reconstructed hit for drift distortions on-line
- Spline objects are small and extremely fast to evaluate and perfect for this purpose

Figure: Effect of drift distortions and laser correction on spatial track measurements

Effects of Correction II

- Uncorrected distortions of O(mm) are immediately visible
- Correction shifts the clusters back well onto the ideal tracks
- Deformation of tracks suggests big impact on momentum resolution

Figure: Effect of drift distortions and laser correction on momentum reconstruction

The corrections restore the ideal momentum reconstruction (mean and sigma) within well below \mathcal{O} (1%)

Felix Böhmer (TUM E18)

TPC software status

Event Deconvolution

There were 2 studies on the feasibility of event deconvolution:

1 Target pointing performed on Monte Carlo data $Y(4260) \longrightarrow J/\Psi \pi \pi$

2 Track deconvolution performed on fully reconstructed data...

Event Deconvolution - Target Pointing & Cuts

Monte Carlo data: effect of target pointing:

Target pointing $2\mu s$ cut -

Event Deconvolution - Target Pointing & Cuts

Monte Carlo data: effect of target pointing:

Track Deconvolution: Riemann tracking at Work

- Event deconvolution in principle feasible, we reach track purities of > 90% with target pointing methods
- Under the assumption of azimuthal symmetry it has been shown that field distortions from space-charge effects can be controlled, for example by a system of laser tracks

Backup Slides

Figure: The two length options and resulting key angles