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Outline

1 Overview of the P̄ANDA experiment

2 The Simulation Framework
I Particle generation
I Particle transport
I ALICE flavor of GEANT3
I Detector simulation: ”digitization” routine

3 Spacecharge simulations
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The P̄ANDA Experiment
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P̄ANDA: AntiProton Annihilations at Darmstadt

Fixed target experiment
Location: Facility for Antiproton
and Ion Research (FAIR), GSI
Antiproton beam (1-15 GeV)
from High Energy Storage Ring
(HESR)

Design luminosity:
2 · 1032(cm2s)−1

p̄p-annihilation rate: 2 · 107 s−1

Physics program: Low energy QCD and hadron physics
Precision measurements
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The Multi-Purpose P̄ANDA Detector
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The Multi-Purpose P̄ANDA Detector
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The Multi-Purpose P̄ANDA Detector
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Central Tracker of the P̄ANDA Detector

One option for the P̄ANDA central tracker is a continuously running
Time Projection Chamber (TPC) with GEM amplification
Main device for momentum reconstruction

Central Tracker requirements

Full solid angle coverage

Secondary vertex resolution
σr,φ = 150µm, σz = 1mm

Momentum resolution σp/p of O(1%)

Particle Identification

”Lightweight”, X/X0 ≈ 1%
−→ 20 000 crystal ECAL
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Simulation Framework
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Particle Generation

C++ framework based on the CERN ROOT framework

Particle Generation:
Several options for particle generation, including a background generator
for p̄p reactions (Dual Parton Model (DPM) generator)

Figure: Energy deposited in the TPC chamber by 10000 background events created by
the DPM generator integrated over chamber azimuth, arb. units.
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Particle Transport

Particle Transport:
Transport through the chamber respecting magnetic field, material, interactions
At certain points in space energy loss is stored (”Monte Carlo (MC) Points” )
Particle transport is done by GEANT3 in ALICE mode

Figure: GEANT MC points of 200 background events from DPM in the TPC
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Why ALICE MC ?

GEANT3 standard:

Create MC hits only when crossing boundaries between different media
or when reaching a certain energy loss threshold
Soft energy loss from tables + Landau-Vavilov straggling

Problems

MC hits have nothing to do with the real physical hits
Unsatisfactory cluster distribution method for a TPC
This method also may produce unphysical depletion / accumulation of
clusters around the MC hits
GEANT3 standard produces some features that are not understood, e.g.
dE/dx distribution
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How does ALICE MC work?

GEANT3 ALICE:

Sample next step-length L from from pdf f(x) = 1
λexp(− x

λ )

L = −λln(r) (λ: mean free path, r: random number ∈ [0,1])
Force GEANT to make a step there
λ(p) ∝ ( dE

dx )−1 from normalized Bethe-Bloch parametrization
Energy loss straggling directly obtained from a tuned Rutherford cross
section
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Energy loss in G3 and G3 ALICE

One example of problems with GEANT in its standard settings:
GEANT3 standard shows a strange second bump in the energy loss
distribution:

Even bigger problems with energy loss using GEANT4
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GEANT3 ALICE: Conclusion

GEANT3 in standard configuration not optimal for a gas detector
I MC point creation unphysical
I Energy loss distribution unclear

ALICE configuration much more transparent:
I Physical cluster distribution, no clustering ”by hand”
I Simple and transparent energy loss model (LOSS=5, see gfluct.F in the

GEANT package)

Crosscheck performed with HEED showed good agreement with our
simulations

Performance: Slower, but acceptable
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Detector Response:
Digitization
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Detector Response: Digitization I

Simulation of detector response (”digitization”) happens in several steps:

1 Clusterization
I Conversion of energy loss at each MC point into number of created

electrons (”primary cluster”)
I No cluster distribution ”by hand” needed in ALICE mode

−→ primary electrons

2 Drifting
I Drift each primary electron through the chamber to the readout
I Depending on starting coordinates, apply

F Attachment
F Diffusion (property of the drift-gas)
F Drift distortions (Space-charge!)

−→ drifted electrons
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Detector Response: Digitization II

3 GEM response
I Create avalanches respecting

F Gain
F Gain stability
F Spread

−→ avalanche

4 Pad Response
I Depending on avalanche position and ”size”

F Decide which pads have been hit
F Evaluate amplitude from avalanche size, gain
F Add noise
F Cut on amplitude and create

−→ signal
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Detector Response: Digitization III

5 Electronics
I From map of hit pads for each event, simulate

F Simulation of CRRC shaper (shaping time: 58 ns )
F Digitize data with given sampling rate and ADC resolution
F Pulse shape analysis (PSA)
−→ amplitude, time of found pulses

−→ ”digi”

6 Create clusters of digis
I Group digis belonging together

−→ cluster
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Space-charge Simulations
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Space-charge Simulations I

The space-charge simulations are an external package creating input files for
digitization and reconstruction

P̄ANDA requires ungated, continuous operation of the TPC at high rates
Starting point: Large number of background events from the DPM
generator

Figure: Energy deposited in the TPC chamber by 10000 background events created by
the DPM generator integrated over full chamber azimuth, arb. units.
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Space-charge Simulations II

Convert energy deposit into ion charge and store into a binned map
For each primary ion create ε back-flow ions above the GEMs, assuming
instantaneous electron drift

tel
drift ∼ 50µs t ion

drift/t
el
drift ∼ 1000

Here: ε = 4: realistic value, based on measurements with a test chamber
Result: Prototype space-charge map

Figure: Ion space-charge (C cm−3)of 10 000 events in the TPC chamber,
integrated over chamber azimuth
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Space-charge Simulations III

Simulate ion drift:
Multiply space-charge map prototype so that the # events corresponds to the time
needed for an ion to drift through one bin-width in Z
This is the final prototype

I Shift the complete map by one bin in ion drift direction
I Superimpose again with the prototype map
I Repeat until equilibrium is reached

Result: Final space-charge map

Figure: Final ion space-charge (C cm−3), integrated over chamber azimuth
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Space-charge Simulations IV

Calculate resulting electrical field:
Use finite element software with proper boundary conditions (DOLFIN)
Obtain electrical distortion field

Figure: Radial component of electrical field generated by space-charge (V/cm)
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Space-charge Simulations V

Superimpose distortion field with homogeneous drift field
Integrate the equation of motion of the electrons for a grid of points in the TPC
volume
Method: 5th order adaptive step-size Runge Kutta algorithm
Obtain final quantity:

Figure: Final drift distortions (in φ) as function of the volume coordinates (cm)

This serves as an input file for our digitization (Drifter!)
Throughout this procedure azimuthal symmetry is assumed!
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Backup Slides
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Backup slide: TPC geometry
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Backup slide: GEANT4 energy loss
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Backup slide: GEANT3 standard TPC hits
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Backup slide: GEANT3 ALICE TPC hits
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Backup slide: GEANT4 standard TPC hits
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Backup slide: G3 ALICE configuration

Set max. number of G3 steps to very high value:
GEANT3->SetMaxNStep(1000000);

Set energy LOSS energy model to ”unofficial” value 5 (see gfluct.F):
gMC->SetProcess("LOSS",5);

Calculate step-lengths etc. in the FairDetector class
Adapt clusterization

Delta electrons: Just as you like, set
I DCUTE
I DCUTM
I CUTELE
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