The PANDA TPC software framework Monte Carlo simulations

Felix Böhmer

Physik Department E18 Technische Universität München

TPC Jamboree Orsay, France, May 2009

Overview of the PANDA experiment

2 The Simulation Framework

- Particle generation
- Particle transport
- ALICE flavor of GEANT3
- Detector simulation: "digitization" routine

Spacecharge simulations

The **PANDA** Experiment

- Fixed target experiment
- Location: Facility for Antiproton and Ion Research (FAIR), GSI
- Antiproton beam (1-15 GeV) from High Energy Storage Ring (HESR)
- Design luminosity: 2 · 10³²(cm²s)⁻¹
- $\bar{p}p$ -annihilation rate: $2 \cdot 10^7 \, \text{s}^{-1}$
- Physics program: Low energy QCD and hadron physics
- Precision measurements

The Multi-Purpose PANDA Detector

Felix Böhmer (TUM E18)

The Multi-Purpose PANDA Detector

The Multi-Purpose PANDA Detector

Central Tracker of the PANDA Detector

- One option for the PANDA central tracker is a continuously running Time Projection Chamber (TPC) with GEM amplification
- Main device for momentum reconstruction

Central Tracker requirements

- Full solid angle coverage
- Secondary vertex resolution *σ*_{r,φ} = 150μm, *σ*_z = 1mm
- Momentum resolution σ_p/p of $\mathcal{O}(1\%)$
- Particle Identification
- "Lightweight", X/X₀ ≈ 1%
 → 20 000 crystal ECAL

Simulation Framework

C++ framework based on the CERN ROOT framework

Particle Generation:

 Several options for particle generation, including a background generator for pp reactions (Dual Parton Model (DPM) generator)

Figure: Energy deposited in the TPC chamber by 10000 background events created by the DPM generator integrated over chamber azimuth, arb. units.

Particle Transport

Particle Transport:

- Transport through the chamber respecting magnetic field, material, interactions
- At certain points in space energy loss is stored ("Monte Carlo (MC) Points")
- Particle transport is done by GEANT3 in ALICE mode

Figure: GEANT MC points of 200 background events from DPM in the TPC

GEANT3 standard:

- Create MC hits only when crossing boundaries between different media or when reaching a certain energy loss threshold
- Soft energy loss from tables + Landau-Vavilov straggling

Problems

- MC hits have nothing to do with the real physical hits
- Unsatisfactory cluster distribution method for a TPC
- This method also may produce unphysical depletion / accumulation of clusters around the MC hits
- GEANT3 standard produces some features that are not understood, e.g. dE/dx distribution

GEANT3 ALICE:

• Sample next step-length \mathcal{L} from from pdf $f(x) = \frac{1}{\lambda} \exp^{(-\frac{x}{\lambda})}$

 $\mathcal{L} = -\lambda \ln(r)$ (λ : mean free path, r: random number \in [0,1])

- Force GEANT to make a step there
- $\lambda(p) \propto (\frac{dE}{dx})^{-1}$ from normalized Bethe-Bloch parametrization
- Energy loss straggling directly obtained from a tuned Rutherford cross section

Energy loss in G3 and G3 ALICE

 One example of problems with GEANT in its standard settings: GEANT3 standard shows a strange second bump in the energy loss distribution:

dE/dx distribution for Pions

Even bigger problems with energy loss using GEANT4

Felix Böhmer (TUM E18)

TPC software status

• GEANT3 in standard configuration not optimal for a gas detector

- MC point creation unphysical
- Energy loss distribution unclear
- ALICE configuration much more transparent:
 - Physical cluster distribution, no clustering "by hand"
 - Simple and transparent energy loss model (LOSS=5, see gfluct.F in the GEANT package)
- Crosscheck performed with HEED showed good agreement with our simulations
- Performance: Slower, but acceptable

Detector Response: Digitization

ТШП

Simulation of detector response ("digitization") happens in several steps:

Olusterization

- Conversion of energy loss at each MC point into number of created electrons ("primary cluster")
- ► No cluster distribution "by hand" needed in ALICE mode
- → primary electrons

2 Drifting

- > Drift each primary electron through the chamber to the readout
- Depending on starting coordinates, apply
 - ★ Attachment
 - * Diffusion (property of the drift-gas)
 - * Drift distortions (Space-charge!)

GEM response

- Create avalanches respecting
 - * Gain
 - * Gain stability
 - * Spread
- \rightarrow avalanche

Pad Response

- Depending on avalanche position and "size"
 - * Decide which pads have been hit
 - * Evaluate amplitude from avalanche size, gain
 - * Add noise
 - * Cut on amplitude and create
- \longrightarrow signal

ТШП

5 Electronics

- From map of hit pads for each event, simulate
 - * Simulation of CRRC shaper (shaping time: 58 ns)
 - * Digitize data with given sampling rate and ADC resolution
 - * Pulse shape analysis (PSA)
 - \longrightarrow amplitude, time of found pulses
- → "digi"

Generate clusters of digis

- Group digis belonging together
- \longrightarrow cluster

Space-charge Simulations

The space-charge simulations are an external package creating input files for digitization and reconstruction

- PANDA requires ungated, continuous operation of the TPC at high rates
- Starting point: Large number of background events from the DPM generator

Figure: Energy deposited in the TPC chamber by 10000 background events created by the DPM generator integrated over full chamber azimuth, arb. units.

Space-charge Simulations II

- Convert energy deposit into ion charge and store into a binned map

$$t_{drift}^{el}\sim 50\,\mu{
m s}$$
 $t_{drift}^{ion}/t_{drift}^{el}\sim 1000$

- Here:
 e = 4: realistic value, based on measurements with a test chamber
- Result: Prototype space-charge map

Figure: Ion space-charge ($C \, cm^{-3}$)of 10 000 events in the TPC chamber, integrated over chamber azimuth

Simulate ion drift:

- Multiply space-charge map prototype so that the # events corresponds to the time needed for an ion to drift through one bin-width in Z
- This is the final prototype
 - Shift the complete map by one bin in ion drift direction
 - Superimpose again with the prototype map
 - Repeat until equilibrium is reached
- Result: Final space-charge map

Figure: Final ion space-charge ($C \, cm^{-3}$), integrated over chamber azimuth

Calculate resulting electrical field:

- Use finite element software with proper boundary conditions (DOLFIN)
- Obtain electrical distortion field

Figure: Radial component of electrical field generated by space-charge (V/cm)

Space-charge Simulations V

- Superimpose distortion field with homogeneous drift field
- Integrate the equation of motion of the electrons for a grid of points in the TPC volume
- Method: 5th order adaptive step-size Runge Kutta algorithm
- Obtain final quantity:

Figure: Final drift distortions (in ϕ) as function of the volume coordinates (cm)

- This serves as an input file for our digitization (Drifter!)
- Throughout this procedure azimuthal symmetry is assumed!

Backup Slides

Figure: The two length options and resulting key angles

Backup slide: GEANT4 energy loss

dE/dx spectrum G4 standard (Pions, 0.3 < p < 0.4)

Backup slide: GEANT3 standard TPC hits

Backup slide: GEANT3 ALICE TPC hits

Backup slide: GEANT4 standard TPC hits

ТШП

ТШП

- Set max. number of G3 steps to very high value: GEANT3->SetMaxNStep(1000000);
- Set energy LOSS energy model to "unofficial" value 5 (see gfluct.F): gMC->SetProcess("LOSS",5);
- Calculate step-lengths etc. in the FairDetector class
- Adapt clusterization
- Delta electrons: Just as you like, set
 - ► DCUTE
 - DCUTM
 - CUTELE