STAR Time-Projection Chamber

Huan Zhong Huang

Department of Engineering Physics Tsinghua University & Department of Physics and Astronomy University of California, Los Angeles

Thanks to Gene Van Buren, Jim Thomas, Blair Stringfellow and Howard Wieman

Relativistic Heavy Ion Collider --- RHIC

Au+Au 200 GeV N-N CM energy Polarized p+p up to 500 GeV CM energy

STAR Physics Approaches

Emphasis on Observables Sensitive to Early Partonic Stages:

- 1) High p_T particles Jet quenching? New baryon dynamics?
- 2) Particle fluctuations and large scale correlations probe conditions near phase boundary.
- 3) Partonic collective flow observables especially for those particles believed to have small hadronic re-scattering cross sections ϕ, Ω , D mesons and J/ ψ .
- 4) D meson production for initial gluon flux and structure function of nuclei.
- 5) J/ ψ for possible color screening effect
- 6) Direct and thermal photon production

Precision Measurements to Map Out Hadronic Evolution Dynamics

- Resonances (ρ, Δ, f₀, K^{*}, φ, Σ(1385) and Λ(1520)) Sensitive to hadronic evolution between chemical and kinetic freeze-out
- 2) Momentum-space-time relations at the kinetic freeze-out thru correlations of identical, non-identical pairs, and light clusters.

STAR Schematic

The STAR Detector

- energy loss in the tracking detectors (TPC dE/dx)
- time of flight measurement (TOF)
- calorimetric measurements (EMC)

STAR TPC Geometry

The STAR Time Projection Chamber

Inner and Outer Field Cages

Central Membrane

TPC Sector Detail

Grids stop here, last anode is larger diameter wire

VIDDOBBOON SERV

Sector Operation for 20:1 signal to noise

Sector	gas gain	anode voltage	
inner	3000	1150	
outer	1100	1380	

5441051 N-1

- Gating Grid Ground Plane of Wires
- Anodes

- No field shaping wires
 - Simple and reliable
- Individually terminated anode wires limit cross-talk

Low gain

Anode Wire-Pad Plane Readout

Typical TPC Readout

Limitations on Wire-Pad Readout

 The induced charge distribution on the pad plane is much wider than the intrinsic avalanche width
--- wire-pad readout scheme not matching the true two-hit resolution capability of the gas detector

2) The width of the induced charge distribution depends on the separation between the anode and pad planes ---- STAR inner sectors 2 mm gap outer sectors 4 mm gap

3) Mechanical stability and wire plane accuracy limit the gap separation

4) In high multiplicity environment the anode wire readout is not very useful

Hit Position from Pad Readout

three pads with amplitudes h₁, h₂ and h₃.

$$\sigma^{2} = \frac{w^{2}}{\ln(h_{2}^{2} / h_{1} h_{3})}$$
$$x = \frac{\sigma^{2}}{2w} \ln(h_{3} / h_{1})$$

Non-Gaussian shape better use weighted average --- Laser signals --- Drift direction

STAR TPC Characteristics

Item	Dimension	Comment	
Length of the TPC	420 cm	Two halves,	
		210 cm long	
Outer diameter of the drift volume	400 cm	200 cm radius	
Inner diameter of the drift volume	100 cm	50 cm radius	
Distance: cathode to ground plane	209.3 cm	Each side	
Cathode	400 cm diameter	At the center of the TPC	
Cathode potential	28 kV	Typical	
Drift gas	P10	10% methane,	
		90% argon	
Pressure	Atmospheric	Regulated at	
	+2 mbar	2 mbar above atm.	
Drift velocity	5.45 cm/µs	Typical	
Transverse	230 $\mu m/\sqrt{cm}$	140 V/cm & 0.5 T	PIU Gas
diffusion (σ)	, <i>, ,</i> ,		
Longitudinal diffusion (σ)	$360 \ \mu m/\sqrt{cm}$	140 V/cm	
Number of anode sectors	24	12 per end	
Number of pads	136 608		
Signal to noise ratio	20:1		
Electronics	180 ns	FWHM	
shaping time			
Signal dynamic	10 bits		
range			
Sampling rate	9.4 MHz		
Sampling depth	512 time buckets	380 time buckets	
		typical	

Electrons Transport in Gas

Electron clouds from primary ionization drift towards the anode and undergo diffusion

- **D** diffusion coefficient
- **Under magnetic field (parallel to Electric Field E)**

the transverse diffusion coefficient --

$$D_T(B) = \frac{D_T}{\sqrt{1 + (\omega\tau)^2}}$$

P10 Gas – $\omega \tau \sim 2.30$ at 0.5 T

 $D_{T}(0.5T) = 230 \ \mu m/sqrt(cm)$

 $D_L = 360 \ \mu m/sqrt(cm)$

Diffusion Contribution $\sigma \sim D^*sqrt(L)$

For L=200 cm drift in STAR TPC $\sigma_T \sim 3.3$ mm; $\sigma_L \sim 5.1$ mm

-- Anode Wire – Pad Plane two-hit resolution does not match the diffusion limit – motivation for GEM read-out !!

Outer and Inner Sectors of the Pad Plane

STAR

Two-Hit Resolutions

Inner Sector Pads – 2.85 x 11.5 mm Outer Sector Pads – 6.20 x 19.5 mm

Laser System for Drift Velocity

TPC Laser Tracks

Laser System -- 500 laser triggers every a few hours ! -- drift velocity σ~ 0.02%

What Happens to Positive Ions?

Gate closed

SpaceCharge: model of charge

HIJET model of "event shape" for 200 GeV AuAu collisions matches radial distribution of zerobias data well for much of the runs.

Distortion equations

(see Blum & Rolandi)

Solve:

T

$$m\frac{d\overline{u}}{dt} = e\overline{E} + e\left[\overline{u}\times\overline{B}\right] - K\overline{u}$$

substituting:

Langevin Equation with "Friction"

$$= \frac{m}{K}, \quad \omega = \frac{e}{m} |\overline{B}|, \quad \mu = \frac{e}{m}\tau, \quad \text{and} \quad \hat{E} = \frac{E}{|\overline{E}|}$$

subject to the steady state condition $\frac{d\overline{u}}{dt} = 0$ yields

$$\overline{u} = \frac{\mu |\overline{E}|}{(1+\omega^2\tau^2)} \left(\hat{E} + \omega\tau \left[\hat{E} \times \hat{B} \right] + \omega^2\tau^2 \left(\hat{E} \cdot \hat{B} \right) \hat{B} \right)$$

Large Data Set is needed for correction studies !

SpaceCharge Field Effects

- Using our "event shape" model
 - Relaxation done on 5cm x 5cm 2D (r-z) grid (assume Φ symmetry)
 - Treat as a perturbation on top of standard TPC E field
 - Distortions are integral of E field in z (drift direction)
 - Not very sensitive to radial component of distortion because tracks are radial-like
 - Lorentz Force Eqn: $\vec{F} \propto q \cdot (\vec{E} \times \vec{B})$

SpaceCharge effect on sDCA

All tracks go the same direction (pos. or neg.)
Track charge

independence

Positive physical sDCA

Field dependence

SpaceCharge effect on sDCA

TPC GridLeak distortion

 Dependence on field, track charge, location, luminosity consistent with ion leakage at gating grid gap

GridLeak Field Effects

Modeled sheets of charge

- Relaxation done on custom 3D grid (plots assume Φ symmetry, but leak is 12-fold symmetry from grid shape)
- E-field and distortion discontinuity at grid gap

GridLeak scales as SpaceCharge!

Applied GridLeak Correction

Not perfect,
but as good as
design spec!

Distortions scale significantly reduced!

After Before

Ionization Energy

Particle Identification Using dE/dx

Inner Sector pads smaller – not as good as outer pads for dE/dx

Momentum Resolution: the STAR Magnet+TPC

- Momentum resolution is only limited by the strength of the magnetic field and is independent of the mass of the particle at high P_T
- Momentum resolution at low P_T is determined by multiple coulomb scattering (MCS)

EXAMPLE 7 Reconstruct Ks, Λ and Ξ

STAR TPC

The STAR TPC has performed as designed -- unexpected space-charge problem due to higher RHIC luminosity ~ 6 x design luminosity some charge leakage in the gating grid boundary can be corrected for reliably so far

STAR benefited from

- 1) better than design spec on construction and E and B alignment
- 2) TPC has two almost independent halves (central membrane)
- 3) many monitor systems and lots of data

STAR TPC upgrade – FEE and DAQ STAR TPC is expected to perform at RHICII @40 x design L

Multi-Gap Resistive Plate Chamber

The MULTIGAP Resistive Plate Chamber

Note 1: internal glass plates electrically floating - take and keep correct voltage by electrostatics and flow of electrons and ions produced in gas avalanches

Note 2: resistive plates transparent to fast signals - induced signals on external electrodes is sum of signals from all gaps

E. Gorini et al. Nucl. Instr. Meth. A 396(1997)93

Good time resolution (<100ps), high detection efficiency(>95%), high granularity, robustious, low cost (\$2M +electronic).

USTC and Tsinghua

Chinese MRPC Works

TOFr PID (62GeV AuAu run)

TOF "alone" PID p_T range:

π/K ~1.6GeV/c,

(π,**K**)/**p** ~ 3.0GeV/c

Chinese STAR Groups –

Shanghai Institute of Applied Physics, University of Science And Technology of China, Tsinghua University, Hua Zhong Normal University and Institute of Modern Physics at LanZhou

The End

Momentum Measurement in a Uniform Field

$$\frac{mv^2}{\rho} = q(v \times B) \quad \rightarrow \quad p_T = qB\rho$$

$$p_T (\text{GeV/c}) = 0.3B\rho \quad (\text{T} \cdot \text{m})$$

$$\frac{L}{2\rho} = \sin\theta/2 \approx \theta/2 \quad \rightarrow \quad \theta \approx \frac{0.3L \cdot B}{p_T}$$

$$s = \rho (1 - \cos \theta / 2) \approx \rho \frac{\theta^2}{8} \approx \frac{0.3}{8} \frac{L^2 B}{p_T}$$

The <u>sagitta</u> $s = x_2 - \frac{1}{2}(x_1 + x_3)$ is determined by 3 measurements with error $\sigma(x)$:

$$\frac{\sigma(p_T)}{p_T}\Big|_{p_T}^{meas.} = \frac{\sigma(s)}{s} = \frac{\sqrt{\frac{3}{2}}\sigma(x)}{s} = \frac{\sigma(x)\cdot 8p_T}{0.3\cdot BL^2}\cdot \sqrt{\frac{3}{2}}$$

$$\frac{\sigma(p_T)}{p_T} \bigg|_{p_T}^{meas.} = \frac{\sigma(x) \cdot p_T}{0.3 \cdot BL^2} \sqrt{720/(N+4)} \quad (N > 10)$$

TRANSITION AVALANCHE TO STREAMER

