GEM TPC Large Prototype Beam tests

This talk is heavily dependent on Akira Sugiyama's presentation at TILC09 held about a month ago, but R.Y. is the one who is responsible for any error you might find in this talk.

Large Prototype test (based on EUDET facility)

GEM module

conceptual design

minimize insensitive area pointing IP between modules (limited frame)

Bunch of tiny connectors (40 pins) 161 connectors

28 pad raws (176/192 pads/raw) ~1.2(w) × 5.4(h) mm² staggered every each layer

all other space for HV supply

+ Back Frame

Total 5,152 ch/module

Gate GEM (14um thick) will be on top of the module

3,200 channels are available now

summer 2009 10,000 channels ready

Feb.1st ~ Mar.6, 2009 Mar. 23 ~ Apr. 8, 2009

GEM module without GATE 4 modules made 3 modules are installed to LP1/EP

shift @ Apr.1st,2009

RO electronics are equipped to 2/3 connectors/raw on 84 raws lever arm ~50 cm

5 GeV/c beam T2K gas (Ar:CF4:isoC4H10/95:3:2) E_{drift} ~ 230V/cm

> establish (good) local resolution at LP1 extend this performance to all over the whole module inter module correction/alignment -----> momentum resolution/efficiency,,,,, realistic performance

Sample Event Display

Pad Response Z=250mm, Row18

Normalized Charge

B=0T

B=IT

Width of Pad Response as a function of drift length

B=0T

fitting result Diffusion Coefficient = $101.6\pm0.4[\mu m/\sqrt{cm}]$

fitting result Diffusion Coefficient = $303 \pm I [\mu m/\sqrt{cm}]$

GARFIELD/Magboltz simulation

LPI data are consistent with GARFIED/Maboltz simulation for diffusion coefficient.

GM resolution as a function of drift length

fitting result

$$\frac{C_D}{\sqrt{N_{eff}}} = 65 \pm 2[\mu m/\sqrt{cm}]$$

fitting result $\frac{C_D}{\sqrt{N_{eff}}} = 22.6 \pm 0.7 [\mu m/\sqrt{cm}]$

$$B=0T \qquad B=IT \\ \begin{cases} C_D = 303 \pm 1[\mu/\sqrt{cm}] & (P.8) \\ \frac{C_D}{\sqrt{N_{eff}}} = 65 \pm 2[\mu m/\sqrt{cm}] & (P.10) \end{cases} \qquad \begin{cases} B=IT \\ C_D = 101.6 \pm 0.4[\mu/\sqrt{cm}] & (P.8) \\ \frac{C_D}{\sqrt{N_{eff}}} = 22.6 \pm 0.7[\mu m/\sqrt{cm}] & (P.10) \end{cases}$$

$$\longrightarrow N_{eff} \sim 22 \pm 1 \qquad \longrightarrow N_{eff} \sim 20 \pm 1$$

Comparison with MP-TPC results

	LPI			MP-TPC
Pad height	5.6mm	Neff	×0.9	6.4mm
Source	Beam(5GeV)	✓ Nionization	l on ×1.2	Cosmic(MIP)
conversion from LPI to MP-TPC				
LPI results r	~ 20~22 <u>×0.9 ×1.2</u> →	22~2	4	Neff = 21 ± 2

Though this is very preliminary result it looks quite consistent with that of small prototype

Now we are at the starting point of LP1 study

systematic study of resolution

z resolution position dependence PH dependence drift distance dependence angle dependence

uniformity of gain cross talk

momentum resolution 2-track separation tracking under non-uniform field

multi-module combined analysis effect of module boundary momentum resolution by multi-module Summary

The first beam test under LP1 has been done

Preliminary results seem to be quite consistent with these obtained w/ the small prototype

More will come (soon) after software development and further analysis

Complete test with GATE is scheduled in winter