
ANALYSIS TRAIN ON THEANALYSIS TRAIN ON THEANALYSIS TRAIN ON THE ANALYSIS TRAIN ON THE
GRIDGRID

Mihaela Gheata

AOD production trainAOD production trainAOD production trainAOD production train
Kine

TASK 1 TASK 2 TASK 3 TASK 4
ESD

AOD
◦ AOD production will be organized in a ‘train’ of tasks
◦ To maximize efficiency of full dataset processing

AOD

◦ To maximize efficiency of full dataset processing
◦ To optimize CPU/IO
◦ Using the analysis framework
T i d if h AOD d i◦ Testing was done to see if the AOD production
approach using a train of tasks adding information one-
by-one really works

What was testedWhat was testedWhat was testedWhat was tested
Small train (2 tasks)Small train (2 tasks)
◦ AliAnalysisTaskESDFilter – ESD to AOD filter

task
Filt i t k d i th ESD i f ti i tFiltering tracks and copying other ESD information into
AOD structure

◦ AliAnalysisTaskJets – task for executing jet
l i i th l i f kanalysis using the analysis manager framework

Doing jet reconstruction and writing results to AOD
Possibility to run in different modesPossibility to run in different modes
◦ Local (with files accessed from AliEn/CAF) –

testing if the algorithm works
OO (C)◦ PROOF mode (CAF) – testing parallel run mode

and merging
◦ Grid mode – the production usageGrid mode the production usage

The setupThe setupThe setupThe setup
Many changes happened in a short time in theMany changes happened in a short time in the
framework
◦ Packages re-organized: base/virtual classes moved

in STEERBasein STEERBase
◦ Analysis framework: event handlers (AOD handler,

MC handler)
D t t t (ESD AOD) h b d i d◦ Data structure (ESD,AOD) have been re-designed

The test setup was .par based (submit code
rather than use existing libs)at e t a use e st g bs)
◦ Set of base common packages: STEERBase, ESD,

AOD, ANALYSIS
◦ Analysis tasks: PWG0base JETAN◦ Analysis tasks: PWG0base, JETAN
◦ The realistic use case will be using AliRoot libraries !

Problems on the wayProblems on the wayProblems on the wayProblems on the way
Several crashes or inconsistent results in earlySeveral crashes or inconsistent results in early
tests
◦ Accessing old data (PDC’06) using new ESD

structure was not possible for a whilestructure was not possible for a while
◦ Some fixes (protections) were added in the filtering

code
E t l t i ll h i d fil i GRID◦ Event loop not processing all chained files in GRID
mode for tag-based analysis (uninitialized variable in
TChain)

Needed quite long to familiarize with usage of
AliEn + event tag system
◦ Some procedures not exactly working as describedSome procedures not exactly working as described

(at least for my rather exotic setup)
Hopefully users will be giving more and more feedback
More FAQ’s and working examplesMore FAQ s and working examples

Splitting in GRIDSplitting in GRIDSplitting in GRIDSplitting in GRID
Some specific GRID issues like: how to splitSome specific GRID issues like: how to split
the input ESD chain (how many files/ sub-
process)

T f (1/j b) d f i i i i th◦ Too few (e.g. 1/job) good for minimizing the
failure rate but not always efficient (jobs waiting
long from SPLITTING to being processed)g g)
◦ Tested 1,5,10,20,50 files/subjob (100KB to 5MB

aod.root)
◦ Too many – jobs starting to fail pointing to oo a y jobs s a g o a po g o

memory problems ? (or just being killed…)
Cannot be reproduced in local mode
Hard to investigate what happenedHard to investigate what happened

Efficiency depends also on processing time
Cannot really be tested now (filtering and jet analysis are
fast)fast)

this is the startup process for root
Executable="root.sh";
Jobtag={"comment:JET analysis test"};

lit t l t# we split per storage element
Split="se";

we want each job to read 10 input files
SplitMaxInputFileNumber="10";

this job has to run in the ANALYSIS partition# this job has to run in the ANALYSIS partition
Requirements=(member(other.GridPartitions,"Analysis"));

we need ROOT and the API service configuration package
Packages={"APISCONFIG::V2.2","VO_ALICE@ROOT::v5-15-08","VO_ALICE@AliRoot::v4-04-Rev-14"};
TTL = "30000";

#ROOT will read this collection file to know, which files to analyze
InputDataList="wn xml";InputDataList= wn.xml ;

#ROOT requires the collection file in the xml-single format
InputDataListFormat="merge:/alice/cern.ch/user/m/mgheata/test/global.xml";

this is our collection file containing the files to be analyzed
InputDataCollection="LF:/alice/cern.ch/user/m/mgheata/test/global.xml,nodownload";

InputFile= {"LF:/alice/cern ch/user/m/mgheata/test/runProcess C"InputFile= { LF:/alice/cern.ch/user/m/mgheata/test/runProcess.C ,
"LF:/alice/cern.ch/user/m/mgheata/test/ESD.par",
"LF:/alice/cern.ch/user/m/mgheata/test/AOD.par",
"LF:/alice/cern.ch/user/m/mgheata/test/ANALYSIS.par",
"LF:/alice/cern.ch/user/m/mgheata/test/JETAN.par",
"LF:/alice/cern.ch/user/m/mgheata/test/STEERBase.par",
"LF:/alice/cern.ch/user/m/mgheata/test/PWG0base.par",
"LF:/alice/cern.ch/user/m/mgheata/test/ConfigJetAnalysis.C",
"LF:/alice/cern ch/user/m/mgheata/test/CreateChain C"};LF:/alice/cern.ch/user/m/mgheata/test/CreateChain.C };

Output archive
OutputArchive={"log_archive.zip:stdout,stderr@Alice::CERN::se","root_archive.zip:*.root@Alice::CERN::se"};

Output directory
OutputDir="/alice/cern.ch/user/m/mgheata/test/output/#alien_counter#";

Output files# Output files
OutputFile={"aod.root","histos.root","jets_local.root"};

Merge the output
Merge = {"aod.root:/alice/jdl/mergerootfile.jdl:aod-merged.root"};
MergeOutputDir={"/alice/cern.ch/user/m/mgheata/test/"};

Validation
Validationcommand ="/alice/cern ch/user/m/mgheata/bin/validate sh";Validationcommand = /alice/cern.ch/user/m/mgheata/bin/validate.sh ;

email
Email="Mihaela.Gheata@cern.ch";

AOD validationAOD validationAOD validationAOD validation
As well as ESD’s produced AOD’s needAs well as ESD s, produced AOD s need
to pass a validation test

O h i h i l i hOtherwise there is no control in what was
really produced
◦ As in AliEn’s Validationcommand={…}
I implemented this in a very simple way

Trying to open aod.root and writing a tiny file
in case of success
◦ No need be too elaborated at this level
◦ Can be refined per run (doing QA histograms…)p (g g)

this is the startup process for root
Executable="root.sh";
Jobtag={"comment:JET analysis test"};

lit t l t# we split per storage element
Split="se";

we want each job to read 10 input files
SplitMaxInputFileNumber="10";

this job has to run in the ANALYSIS partition
Requirements=(member(other.GridPartitions,"Analysis"));

we need ROOT and the API service configuration package
Packages={"APISCONFIG::V2.2","VO_ALICE@ROOT::v5-15-08","VO_ALICE@AliRoot::v4-04-Rev-14"};
TTL = "30000";

#ROOT will read this collection file to know, which files to analyze
InputDataList="wn.xml";

#ROOT requires the collection file in the xml-single format
InputDataListFormat="merge:/alice/cern.ch/user/m/mgheata/test/global.xml";

this is our collection file containing the files to be analyzed
InputDataCollection="LF:/alice/cern.ch/user/m/mgheata/test/global.xml,nodownload";

InputFile= {"LF:/alice/cern.ch/user/m/mgheata/test/runProcess.C",
"LF:/alice/cern.ch/user/m/mgheata/test/ESD.par",
"LF:/alice/cern.ch/user/m/mgheata/test/AOD.par",
"LF:/alice/cern.ch/user/m/mgheata/test/ANALYSIS.par",
"LF:/alice/cern.ch/user/m/mgheata/test/JETAN.par",
"LF:/alice/cern.ch/user/m/mgheata/test/STEERBase.par",
"LF:/alice/cern.ch/user/m/mgheata/test/PWG0base.par",
"LF:/alice/cern.ch/user/m/mgheata/test/ConfigJetAnalysis.C",
"LF:/alice/cern.ch/user/m/mgheata/test/CreateChain.C"};

Output archive
OutputArchive={"log_archive.zip:stdout,stderr@Alice::CERN::se","root_archive.zip:*.root@Alice::CERN::se"};

Output directory
OutputDir="/alice/cern.ch/user/m/mgheata/test/output/#alien_counter#";

Output files
OutputFile={"aod.root","histos.root","jets_local.root"};

Merge the output
Merge = {"aod.root:/alice/jdl/mergerootfile.jdl:aod-merged.root"};
MergeOutputDir={"/alice/cern.ch/user/m/mgheata/test/"};

Validation
Validationcommand ="/alice/cern ch/user/m/mgheata/bin/validate sh";Validationcommand = /alice/cern.ch/user/m/mgheata/bin/validate.sh ;

email
Email="Mihaela.Gheata@cern.ch";

Merging AOD’sMerging AOD’sMerging AOD sMerging AOD s
We may want have some strategy of storingWe may want have some strategy of storing
AOD’s for a run
CAF merging OK

U i f AliA l i MUsing wrappers from AliAnalysisManager
A problem that scales with the size of the train
◦ Filtering + jets ~ 100MB/run (100K pp events)◦ Filtering + jets 100MB/run (100K pp events)
◦ Merging has to fit memory
More parameters in the automatic merging in
AliE ?AliEn ?
◦ To follow the desired granularity depending of the

number of job input files and of the AOD sizej p
◦ Problems with TFileMerger
◦ If non-mergeable object in file, trees not merged (extra

TProcessId object – put by whom if files were validated?)TProcessId object put by whom if files were validated?)

this is the startup process for root
Executable="root.sh";
Jobtag={"comment:JET analysis test"};

lit t l t# we split per storage element
Split="se";

we want each job to read 10 input files
SplitMaxInputFileNumber="10";

this job has to run in the ANALYSIS partition
R i t (b (th G idP titi "A l i "))Requirements=(member(other.GridPartitions,"Analysis"));

we need ROOT and the API service configuration package
Packages={"APISCONFIG::V2.2","VO_ALICE@ROOT::v5-15-08","VO_ALICE@AliRoot::v4-04-Rev-14"};
TTL = "30000";

#ROOT will read this collection file to know, which files to analyze
InputDataList="wn.xml";

#ROOT requires the collection file in the xml-single format
InputDataListFormat="merge:/alice/cern.ch/user/m/mgheata/test/global.xml";

this is our collection file containing the files to be analyzed
InputDataCollection="LF:/alice/cern.ch/user/m/mgheata/test/global.xml,nodownload";

InputFile= {"LF:/alice/cern.ch/user/m/mgheata/test/runProcess.C",
"LF /alice/cern ch/ ser/m/mgheata/test/ESD par""LF:/alice/cern.ch/user/m/mgheata/test/ESD.par",
"LF:/alice/cern.ch/user/m/mgheata/test/AOD.par",
"LF:/alice/cern.ch/user/m/mgheata/test/ANALYSIS.par",
"LF:/alice/cern.ch/user/m/mgheata/test/JETAN.par",
"LF:/alice/cern.ch/user/m/mgheata/test/STEERBase.par",
"LF:/alice/cern.ch/user/m/mgheata/test/PWG0base.par",
"LF:/alice/cern.ch/user/m/mgheata/test/ConfigJetAnalysis.C",
"LF:/alice/cern.ch/user/m/mgheata/test/CreateChain.C"};

Output archive
OutputArchive={"log_archive.zip:stdout,stderr@Alice::CERN::se","root_archive.zip:*.root@Alice::CERN::se"};

Output directory
OutputDir="/alice/cern.ch/user/m/mgheata/test/output/#alien_counter#";

Output files
OutputFile={"aod root" "histos root" "jets local root"};OutputFile={ aod.root , histos.root , jets_local.root };

Merge the output
Merge = {"aod.root:/alice/jdl/mergerootfile.jdl:aod-merged.root"};
MergeOutputDir={"/alice/cern.ch/user/m/mgheata/test/"};

Validation
Validationcommand ="/alice/cern.ch/user/m/mgheata/bin/validate.sh";

email
Email="Mihaela.Gheata@cern.ch";

What we have learnedWhat we have learnedWhat we have learnedWhat we have learned
The system is complex enoughThe system is complex enough…
◦ Testing all changes at a time does not help

m ch in deb gging itmuch in debugging it
… but it works
◦ The analysis framework stable in all modes

CAF case working from the beginning
◦ AOD production can be done following a

rather simple pattern
◦ Testing in local mode with files from GRID

was very useful for debugging

Overview and conclusionsOverview and conclusionsOverview and conclusionsOverview and conclusions
Tested a small AOD train based onTested a small AOD train based on
AliAnalysisManager framework
◦ Several problems came up but the global result

OKOK
◦ Strategy related to job splitting, output merging

and validation to be established
◦ Train size may influence .jdl parameters
Analysis framework running stable in all

dmodes
◦ Running successfully in local mode is a good hint

for what will happen in PROOF or GRIDfor what will happen in PROOF or GRID
◦ Using such trains may lead to memory issues

that should be understood before running in
GRIDGRID

