ITS Reconstruction for HLT

C.Cheshkov & J.Belikov 11/10/2007 ALICE Offline Week

Outline

- Physics cases
- Tracking for ITS
- Trigger for open charm (new)
- Summary current code status

ITS HLT – Physics cases

• Jets

- Aim: trigger for high-Et jets
- Requires: TPC tracking (+ITS tracking?)
 - ITS tracking will improve the resolution and remove 'ghosts'

• Open charm

- Aim: trigger for D0 \rightarrow K π
- Requires: TPC and ITS tracking (+PID?)
- Z position of the primary vertex from ITS in dHLT
 - Aim: improve the di-muon mass resolution
 - Requires: SPD clustering + vertex finder

ITS tracking for HLT

• Motivation:

- Needed for open charm trigger
- Desirable for jet analysis
- ITS vertexer (based on SPD clusters) can provide vertex for TPC tracking and possibly for MUON tracking
- Algorithm based on optimized for time performance off-line ITS tracking code (clusterer, vertexerZ & tracker V2)

ITS tracking for HLT

- Clusterer (AliITSClustererV2) and vertexer (AliITSVertexerZ):
 - Off-line code optimized for time performance
 - Vertexer about 40x faster than original one
 - Resolution on Z vertex about 60-70 microns
- Tracker (AliITStrackerV2):
 - Clusters sorted in Z and \$\ophi\$
 - Kalman filter matrix operations via explicit calculations
 - Factor 5-10 in time performance
 - Two reconstruction passes: with and without vertex
 constraint 11/10/2007
 ITS Reconstruction for HLT

ITS tracking performance

- The overall efficiency is quite satisfactory
- ITS tracking almost completely removes "ghost" Hough tracks
- **Good tracks list from AliITSComparisonV2 macro**
- Found tracks definition: >= 5 clusters in ITS

ITS tracking performance

- Impact param resolution dominated by SPD (~ off-line resolution)
- For 1 GeV/c track, the impact parameter resolution is: 60 microns (trans) and 160 microns (long)

ITS tracking performance

- The angular resolution is improved about 2 times (w.r.t to TPC-only Hough tracking)
- The resolution is dominated by ITS (~off-line resolution)
- No significant dependence on event multiplicity

11/10/2007

HLT ITS Timings

	dN/dy=2000	dN/dy=4000	dN/dy=6000	dN/dy=8000
Clusterer	1.29(0.53)s	1.46(0.61)s	1.66(0.70)s	1.83(0.79)s
Vertexer	0.04s	0.075s	0.125s	0.180s
Tracking	0.33(0.26)s	0.87(0.54)s	1.56(0.90)s	2.41(1.38)s

- The numbers in brackets are without using SDD
- W/o any calibration/alignment

HLT ITS: with vs without SDD

• Main reasons to consider tracking w/o SDD:

- Many SDD DDLs \Rightarrow expensive for HLT
- Slowest part of the clustering
- SDD needs precise calibration (might not be available online)
- The deterioration of tracking efficiency acceptable

11/10/2007

D0->Kπ trigger: sim & rec

Simulation:

- Signal events:
 - PYTHIA6: From 100 to 500 D0 within the barrel acceptance, forcing hadronic decays
 - + Parametrized HIJING: underlaying event with dN/dy~2000
 - **Realistic track reconstruction in high multiplicity environment**
 - **Realistic primary vertex reconstruction**
- Background events: Parametrized HIJING dN/dy~2000

Reconstruction:

- Offline: Standard barrel tracking
- HLT:
 - **Primary vertex reconstruction using HLT tracks**
 - TPC Hough transform
 - + ITS HLT tracking

D0->Kπ trigger: selection

• Tracks selection:

- Track reconstructed in TPC+ITS
- Minimum Pt cut
- Maximum impact parameter cut

Secondary vertex selection:
Two tracks with opposite charge
Cut on the product of impact pars
Cut on DCA
Cut on the pointing angle
Cut on cos(theta*)

• No PID is used

• Same cuts for offline and HLT

Parameter	$1 < P_t < 2GeV/c$	$2 < P_t < 3GeV/c$	$3 < P_t < 5 GeV/c$	$5GeV/c < P_t$
P_t^K, P_t^{π}	$> 800 \; MeV/c$			
d_0^K, d_0^π	$< 700 \ \mu m$	$< 500 \ \mu m$	$< 500 \ \mu m$	$< 500 \ \mu m$
$d_0^K \times d_0^\pi$	$< -60000 \ \mu m^2$	$< -40000 \ \mu m^2$	$< -30000 \ \mu m^2$	$< -20000 \ \mu m^2$
dca	$< 400 \ \mu m$	$< 300 \ \mu m$	$< 300 \ \mu m$	$< 300 \ \mu m$
$cos(\theta_{pointing})$	< 0.95	< 0.98	< 0.98	< 0.98
$ cos(heta^*) $	< 0.6	< 0.6	< 0.6	< 0.6

Table 1: Cuts for selection of $D_0 \to K^- \pi^+$ in Pb-Pb collisions with $\sqrt{s_{NN}} = 5.5 \ TeV^+$

11/10/2007

D0->Kπ trigger: efficiency
Good (findable) candidates defined as: K, π: |Eta| < 0.9, Pt > 0.8

Observed D0 reconstruction eff in agreement with single-track one

D0->Kπ trigger: efficiency In case of "Physics" efficiency study, the findable candidates defined as: D0: |Eta| < 0.9, Pt > 1.0

D0->Kπ trigger: resolution

- **Invariant mass resolution is dominated by track momentum uncertainty**
- HLT momentum resolution is defined by the TPC Hough Transform reconstruction
 - ⇒ Mass resolution rises significantly with Pt

D0->Kπ trigger: mass cut The obtained resolution is used to define the invariant mass cut for HLT

D0->Kπ trigger:Fake trigger rate

- 400 HIJING events with dN/dy~2000
- Same analysis over background
- Apply invariant mass cut defined earlier

3 sigma: Fake Trigger Rate < 0.015 (2 out of 400) 6 sigma: Fake Trigger Rate < 0.03 (6 out of 400)

D0->Kπ trigger: timing

- The cut on d₀(K)*d₀(π) at the beginning of track pair selection
- + minor changes in the offline analysis code

dN/dy=2000	dN/dy=4000	dN/dy=6000	dN/dy=8000
10ms	30ms	90ms	160ms

Summary – code status

Good news:

- ITS clusterer, vertexer and tracker for HLT are in CVS
- They derive from the corresponding V2 and vertexerZ ITS classes which are operational
- Tracker V2 is fully misalignment-aware
- The obtained timing performances should be still valid
- The code for D0->Kpi trigger could be easily introduced into HLT framework (as soon as we get the HLT tracks into the offline ESD format)

• Bad news:

- Clusterer V2 is not calibration-aware (certain work is needed)
- Fixes + misaligment-awareness of vertexer have to introduced
- The code has to plugged into the new HLT processing framework

References

- ALICE Progress Report 25/04/2005 http://indico.cern.ch/conferenceDisplay.py?confId=
- PWG3 Meeting http://indico.cern.ch/materialDisplay.py?contribId