

Offline Week

CERN, Oct 10th 2007

ITS alignment using Millepede and cosmics: status report

M. Lunardon, A. Dainese, S. Moretto, A. Rossi

University of Padova INFN of Padova and LNL

- The AliITSAlignMille class
 - status of the code
 - input/output

• Short review of the first steps

- test with 160 detectors and 3 d.o.f.
- test with 6 d.o.f. and more detectors

• Test with full simulation

- problem with residuals in SPD
- verification tests

• Conclusions and next steps

Status of the code

- Class AliITSAlignMille ready and working under aliroot version 4-06-Release
 → sent to Massimo to be committed
- Macro to run Millepede for ITS: ITSAlignMille.C
 ready but not yet committed

Input/Output

Ingredients to run AliITSAlignMille

Input configuration (*AliITSAlignMille.conf*) :

- list of modules to be aligned and free parameters
- starting geometry (*geometry.root*)
- expected range for free params (sigma's, fixed at the moment)
- set of tracks (*AliTrackPoints.N.root*)
 → list of *points* in global coordinates + *their uncertainties*

Output :

• values of the free parameters with estimated stdev

Checking the results

Input:

• used misalignment (*ITSMisalignment.root*)

Output

- distributions of alignment parameters: real, mille, delta (mille – real), pull (delta/err_mille)
- evaluation of mean and rms of delta distributions (the average "residual" misalignment)

example: delta(X_{LOC}) for SPD (see later)

S.M. - M. L. - A. D. - Offline Week - Offline Wee

Fast simulation with SimMille.C

- 1. A muon direction is generated
- 2. Intersection points with misaligned detectors are evaluated in local coordinate systems
- 3. Points are smeared with given σ 's
- Global coordinates are calculated using ideal geometry and written as AliTrackPointArray

Advantages w.r.t. standard sim:

- 1. faster
- 2. σ's of points passed to Millepede under control
- 3. no "unexpected" effects

The 3 d.o.f. test case

Fast simulation of cosmic-like tracks

- realistic cosmic-like direction distribution (ACORDE)
- test with translations in the (x-z) local plane and rotation around Y_L (angle θ)
- selection of 164 modules with higher statistics (55 + 30 + 79)
- a total of 164x3 ~ **500 free alignment parameters**;

The 3 d.o.f. test case

Test: xz shifts – rot YL (θ) – 20000 tracks in SP (about 10 days) SPD X , Z, θ

The 3 d.o.f. test case

SPD X-SHIFT (µm)

Conversion from number of tracks to days: estimate of 1.8 cosmics per minute *crossing SPD0* \rightarrow 1.8 x 60 x 24 ~ 2.6 kTracks per day

Test case details

- fast simulation of cosmic-like events spread over the full ITS
- no magnetic field (straight tracks)
- full (random) misalignment (6 degrees of freedom)
- different sets of modules, from 166 to 953
- test with 12 points tracks (crossing SPD) and less points
- no fixed detectors
- no global constraints

The input misalignment

- significative uniform distributions
- **random** distributions (no correlations)

Double_t globalZ = 0.; Double_t mecanicalPrec = 0.000; Double_t resFact = 5.1; Double_t spdXY = 0.0015*resFact; // = **76.5 mu** Double_t sddXYZ = 0.0030*resFact; // = **153 mu** Double_t ssdXY = 0.0020*resFact; // = **102 mu** Double_t rot = 0.0900; // deg -> psi,theta,phi in [-rot,rot] Double_t spdZ = 0.0020*resFact; // = **102 mu** Double_t spdZ = 0.0020*resFact; // = **102 mu**

- rot=0.09 corresponds, as maximum displacement:
 - SPD: theta,psi: 55 mu phi: 10 mu
 - SDD: theta,psi: 59 mu phi: 55 mu
 - SSD: theta,psi: 31 mu phi: 57 mu

1) Test as a funtion of statistics

config "*test3*" : 375 modules (138 + 78 + 158)

1) Test as a funtion of statistics

config "*test3*" : 375 modules (138 + 78 + 158)

1) Test as a funtion of statistics

config "*test3*" : 375 modules (138 + 78 + 158)

16

PIXEL

2) Test as a funtion of number of modules

50000 tracks crossing SPD0

STRIP

2) Test as a funtion of number of modules

50000 tracks crossing SPD0

3) Test as a funtion of number of required layers

STRIP

3) Test as a funtion of number of required layers

stat corresponding to 50000 12 pts. tracks crossing SPD0

The 6 d.o.f. test case with full simulation

if we compare full simulation Millipede results with fast simulation ones:

Coordinates	Misalignm. RMS	FAST	FULL
Х	47 um	5	10
У	45 um	6	22
Z	62 um	5	8
Psi	53 mdeg	8	26
theta	51 mdeg	6	12
phi	50 mdeg	28	50

to be understood 54000 tracks

12 points

incident angle < 60°

check of residuals in full simulation (cosmic muons)

observation of non-zero residual distributions in some SPD modules

observation of non-zero residual distributions in some SPD modules

residual distribution centroids

Residuals in full simulation with 6 d.o.f

INFN

Zero residual distribution.

No strange behavior observed!

Full simulation with 6 d.o.f

Test on "strange" modules 84 and 85 (same SPD1 UP region, 84 with a shift and 85 no shift):

- 1. only rotations: no shifts
- 2. only translations misalignment: same behavior
 - only x translation: no shifts
 - only y translation: shift in 84 module (negative dy)
 - only z translation: no shifts

The shift is associated with Y misalignment opposite to the Yloc module axis

Test: 6 d.o.f full simulation: muons from the center Back2Back

Test with a full simulation with 6 d.o.f: muons from the center Back2Back

SDD RESX (um) 40 30 20 Small non random effect in SDD 10 same in NULL & 0 misall. -10 -20 -30 -40 250 500 300 350 400 450

Modules number

S.M. – M. L. – A. D. - Offline Week – CERN – 10.10.2007

The null simulation case:

5) RMS dependencies on the track angle wrt module direction

UNIVERSITA DECLISIUM

The full simulation: "null" case

5) RMS dependencies on the track angle wrt module direction

DEGLISIUM DI PADOVA

• Found a problem in residual distributions for the SPD with misalignment in FULL simulation.

- From analysis of residual distribution:
 - SPD: incident angle dependence of σ_x
 - SDD: $\sigma_z = 20$ um
 - SSD: $\sigma_z = 800 \text{ um}$
 - No explicit dependency of RMS on the number of digits in y and z direction

 Change in the AliAlignmentTracks::ProcessESDCosmics to obtain AliTrackPoints with the correct sigmas and the points selection as a function of the incidence angle.

significant check with the fast simulation using exactly the same conditions!

- Millepede:
 - configuration parameters: to be invastigated
 - define optimal set of detectors to be aligned and optimal set of tracks.

The MuBeam simple test case

First Test

- standard (full) simulation of cosmic-like events
- a narrow beam of parallel 18 GeV muons along the vertical axis → 16 modules involved (4 SPD + 8 SDD + 4 SSD)
- no magnetic field (straight tracks)
- simple misalignment: only translations in the x-z local plane
- 1 fixed detector w/o misalignment (SPD #7)
- a total of 15x2 = 30 free alignment parameters

The simple MuBeam test case

TAL				
	LAYER	Local X-SHIFT (μm)	MILLE PARAM	Delta
7	1	0.0	0.0 ± 0.0	0.0
47	1	-20.0	-20.0 ± 0.0	0.0
95	2	-122.0	-123.0 ± 0.0	-1.0
175	2	53.0	51.0 ± 0.0	-2.0
244	3	52.0	24.0 ± 0.0	-28.0
280	3	-214.0	-184.0 ± 0.0	30.0
322	3	31.0	48.0 ± 0.0	17.0
329	3	-114.0	-141.0 ± 0.0	-27.0
409	4	120.0	145.0 ± 0.0	25.0
417	4	-19.0	-46.0 ± 0.0	-27.0
497	4	-108.0	-84.0 ± 0.0	24.0
513	5	-17.0	-19.0 ± 0.0	-2.0
887	5	-146.0	-148.0± 0.0	-2.0
1687	6	56.0	53.0 ± 0.0	-3.0
2162	6	-52.0	-56.0 ± 0.0	-4.0

The simple MuBeam test case

Why this SDD bad result?

- Problem with SDD clustering
 - solved later
- Problem with cluster uncertainties:
 - in AliTrackPointArray from reco: fixed nominal values

	SPD	SDD	SSD
X _{LOC}	14	30	25

PRELIMINARY! (low stat)

- from residuals (cluster-hit) :

	SPD	SDD	SSD
X _{LOC}	11-20	30-60	15-70

- from tracking : again different (see Andrea's plots)

