Status of the Analysis Framework

Andreas Morsch
ALICE Offline Week
10/10/2007

Why Organized Analysis ?

* Most efficient way for many analysis tasks to read
and process the full data set.

— In particular if resources are sparse.
— Optimise CPU/IO ratio

e But also

— Helps to develop a common well tested framework for
analysis.

— Develops common knowledge base and terminology.

— Helps documenting the analysis procedure and makes
results reproducible.

Design Goals

Flexible task and data container structure

User code independent of computing schema
(interactive: local, PROOF or batch: GRID)
Input data: ESD, AOD, MC Truth

— Access using common interface

Output data:
— AOD

— But also user histograms, containers for efficiency
calculations

— Transparent handling of memory resident and file
resident data in distributed environment

Implementation

* Analysis train/taxi similar to PHENIX

 Based on the existing
AliAnalysisManager/Task framework
(A. and M. Gheata)

* AlIVEventHandler interface for transparent
optional additional event loop managements

o AlIVEvent, AliVParticle, ... for transparent
data access

AlIAnalysis... Framework

o Data-oriented model composed of o -
Independent tasks
— Task execution triggered by data \ /
readiness neuTo | l/ neuT

o Parallel execution and event loop
done via TSelector functionality
— Mandatory for usage with PROOF

* Analysis execution performed on
event-by-event basis.
— Optional post event loop execution.

AliAnalysisTask

A. Gheata

AliAnalysis + Optional Data Services

o AliVirtualEventHandler
AliAnalysisManager
» AliVirtualEventHandler |+
| /-
' | AliIMCEventHandler AlIAODHandler
AliAnalysisTask ? *
' AlIVEvent
.| AIESDEvent . |
(AAODEvent) AlIMCEvent AlIAODEvent

T T '

Comment; AliVParticle

One could symmetrise the design T 1 5

by “hiding” the TChain mechanism—— : : _
inside an input handler. AliIESDtrack AliMCParticle AlIAODtrack

Common ESD Access Handling

void AliAnalysisTaskXYZ: :ConnectInputData (Option t* option)
// Connect the input data
fChain = (TChain*) GetInputData(0):;
fESD = new AliESDEvent () ;
fESD->ReadFromTree (fChain) ;

}
void AliAnalysisTaskXYZ: :Exec (Option t* option)
{
// For data produced without AliESDEvent
AliESD* old = fESD->GetAliESDO1ld() ;
if (old) fESD->CopyFromOldESD() ;
}

Attention: - PDCO06 Data (v4-04) needs specially patched ESD.par or lIbESD.so
- FMD branch has to be switched off

What about AOD or Kinematics
Analysis ?

 Same schema works for AOD analysis
— TChalin contains AOD files
— User connects AIIAODEvent to chain

e ... and even for Kinematics
— Add galice.root files to TChalin

— This “triggers” correct loop over files
— Obtain AlIMCEvent from the manager as usual.

(Ch. Klein-Bdsing)

Common AOD Access Handling

AliAnalysisManager [@—— AliVirtualEventHandler

A

AlIAODHandler ®— AlIAODEvent

AliAODHandler* aodHandler = new AliAODHandler() ;
aodHandler->SetOutputFileName ("aod.root") ;

AliAnalysisManager *mgr
= new AliAnalysisManager (‘Analysis Train’, ‘Test’);
mgr->SetEventHandler (aodHandler) ;

AliAnalysisDataContainer *coutputl = mgr->CreateContainer (‘*AODTree’,
TTree: :Class (),
AliAnalysisManager: :kOutputContainer, "default");

User Analysis Code: Output Data

void AliAnalysisTaskXYZ: :CreateOutputObjects ()

{

// Create the output container

//
// Default AOD
AliAODHandler* handler = (AliAODHandler*)

((AliAnalysisManager: :GetAnalysisManager()) -
>GetEventHandler ()) ;

fAOD = handler->GetAOD() ;
fTreeA = handler->GetTree() ;
fJetFinder->ConnectAOD (£A0D) ;

Common Kinematics Input

* Before via class AliAnalysisTaskRL
— Many dependences outside analysis
— Requires implementation of specific MC
analysis tasks.

e Now

— Transparent usage of MC information via
AlIMCEvent combining
* Kinematics Tree
 TreeE (Event Headers)
» Track References

AliAnalysisManager @®—— AliVirtualEventHandler AliVEvent

A A

AlIMCEventHandler &———— AlIMCEvent

AliMCEventHandler* mcHandler = new AliMCEventHandler () ;

AliAnalysisManager *mgr
= new AliAnalysisManager (‘Analysis Train’, ‘Test’);
mgr->SetMCtruthEventHandler (mcHandler) ;

User Analysis Code: MC truth

void AliAnalysisTaskXYZ: :Exec (Option t* option)

{

// During Analysis

AliMCEvent* mc = mgr->GetMCEventHandler () ->MCEvent () ;

Int t ntrack = mc->GetNumberOfTracks() ;

for (Int t i = 0; i < ntrack; i++)

{
AliVParticle* particle = mc->GetTrack (i) ;
Double t pt = particle->Pt();

Some words on TrackReferences

o TParticle written in TreeK carries only limited information
about the transport MC truth.

— Only properties at production point
— Some MC truth is not stored
e On the other hand AliHit contains MC truth but also
depends on detector acceptance and response
— Some MC truth is lost

e Solution AliTrackReference In tree TreeTR

— Particle information at user defined reference plane crossings
— Used in ITS, TPC, TRD, TOF, MUON, FRAME

To be discussed:
Are the present Track References useful for efficiency and acceptance studies ??

Problems with the previous
Implementation

* Track reference information spread over
branches

— One branch per detector

e TreeTR has structure different from TreeK

— TreeK: one entry per particle
 Primaries and secondaries

— TreeTR: one entry per primary

* Information about one particle has to be
collected from several branches.

Present Implementation

e One branch for track references instead of several.
— Detectors identified by new data member fDetectorld.
 Synchronize TreeK and TR

— Reorder the tree in a post-processor after simulation of each event
— Executed automatically on the flight when old data is read

AlIMCEvent

Header
*Particles

*Track Refs Treek

TreeTR

AliVParticle

“ AlIMCParticle

AlIMCParticle

 Wraps TParticle

« Should also provide the TrackReference and vertex
Information

— What is here the commonality with AlIESDtrack and
AlIAODtrack ?

e Technical problem:

— AliIMCParticle is created on the flight and has to be
buffered in AIMCEvent

— No problem for TParticle part (AliStack already contains
the mechanism), but what about AliTrackReference which
IS stored per particle inside a TClonesArray ?

ESD Filter

AliAnalysisTask

AliFilter #— TList

>
IsSelected(TObject *)
<

Ulint_t interpreted as a bit-field storing filter information
Bit n 0/1 => Filter n no/yes

Prototype ! Requirements of the Effeciency and Acceptance Framework are being discussed.

TestTrain

S om

AliFilter ¢—— L

— ESDtrackCuts

AliAnalysisTask AliAnalysisTask
ESDfilter Jets

Next Steps (from July Offline Week)

« Collect, integrate, assemble and test existing
analysis tasks (started but not finished)

e Collect requirements on
— AQOD (done, M. Oldenburg)

— Cuts for filters (tracks, VO, Kinks) (ongoing, R. Vernet)
— Number of ESD reading cycles (>1 for flow analysis)

« Define possible interactions with efficiency
calculation framework (done, see Silvia’s talk)

 MC information handling
— Kinematics, reference hits (almost done)

Other requirements

 Event merging, for example Pythia+HIJING

* Event mixing

— Both should be relatively easy to implement
using the VEventHandler

 For PROOF, possibility to connect Trees to
files and merge mechanism for file resident
objects.

— Now a show stopper. Tests are only possible
on relatively small event samples.

