

Status of the SPD offline

Domenico Elia (INFN Bari)

- Alignment
- Geometry (A. Pulvirenti)
- Other issues

Calibration: see talk by H. Tydesjo

Domenico Elia / INFN Bari

<u>SPD Offline</u> Alignment

- Alignment and survey data:
 - several discussions with people involved
 - dedicated SPD meeting in July (A. Pepato et al.)
 - basic outcome:
 - no internal survey available (just typical deviations wrt nominal)
 - SPD (as the whole ITS) coaxial with the beam pipe
 - ITS + beam pipe not centered wrt TPC rails
 - measurements at level of sectors and half-barrels during the installation phase providing typical expected precisions
 - > input for the realistic misalignment simulation:
 - σ_{x,y,z} for module/sector/half-barrel positioning included in MakeITSRealisticMisAlignment.C (A. Dainese et al.)

<u>SPD Offline</u> Geometry

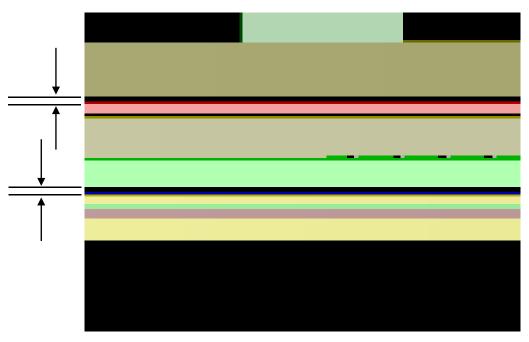
• "Old" geometry (AliITSv11PPRasymmFMD):

- > problem with holes at sector boundary:
 - due to use of "MANY" option when positioning volumes
 - checked to affect PDC06 (not PDC05)
 - fixed using assemblies (Bjorn, Ludovic)
 - class revision 1.56 on CVS since July

<u>SPD Offline</u> Geometry

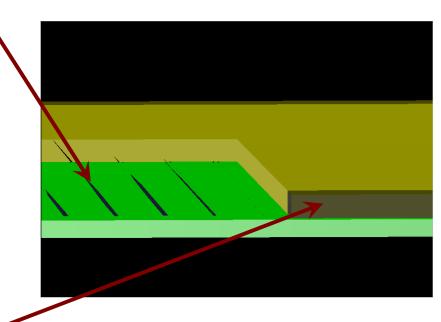
Coding of the new SPD geometry:

- barrel part almost completed (see nex slides from Alberto):
 - glue layers between several parts of the half-stave
 - half-stave volume as alignable one besides ladder (also Ludovic)
 - SMD components on pixel bus, thermal grease, bump-bonding
- new AliITSv11GeometrySPD version recently committed
- integration in AliITSv11Hybrid :
 - much work done by Ludovic before leaving (august)
 - some tests already done, to be extensively continued
- > cables and services:
 - relevant infos gathered, going to be implemented
- further checks: materials, numbering/indexing issues



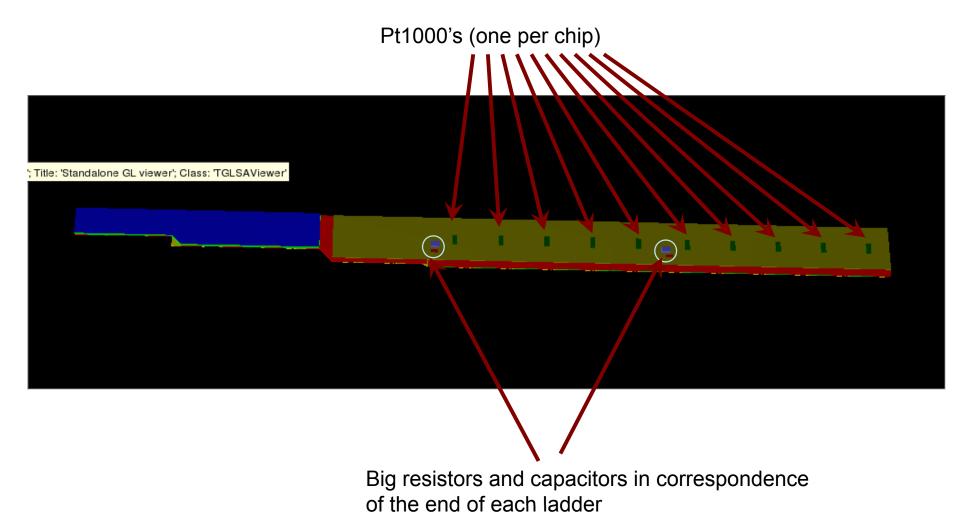
Details added to the SPD geometry implementation:

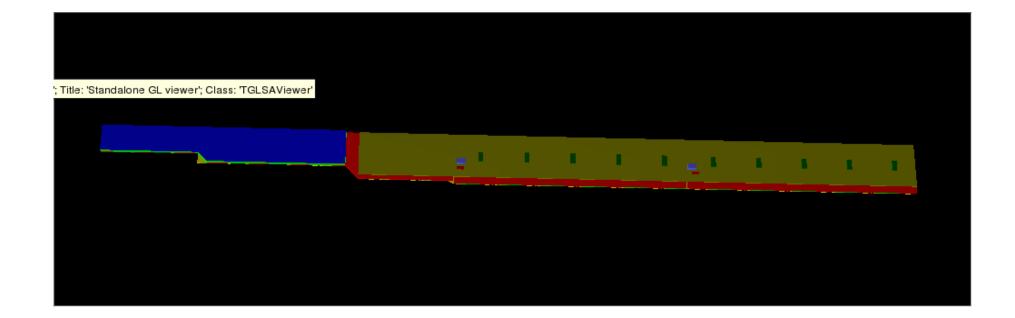
- grounding foil:
 - glue layers
 - thermal grease in the holes
- pixel bus:
 - (big) resistors, capacitors & pt1000
 - the small ones have been skipped
- ladder:
 - bump bonds between sensor and chips in ladders
- definition of half-stave volume
 - will be another alignable volume


Glue layers

- Variable thickness layers
 - leave some free space around the ladder
 - prepared for ladder movement (alignment)
- Parameter initialized in constructor
 - AliITSv11GeometrySPD(Double_t gap)

Bump bondings


- Bumps are not implemented one by one in order not to slow down the geometry builder
- bump bond "stripes" (one per column)


Added guard ring around the sensor

A. Pulvirenti – SPD geometry coding

Pixel bus components

Half-stave assembly

A. Pulvirenti – SPD geometry coding

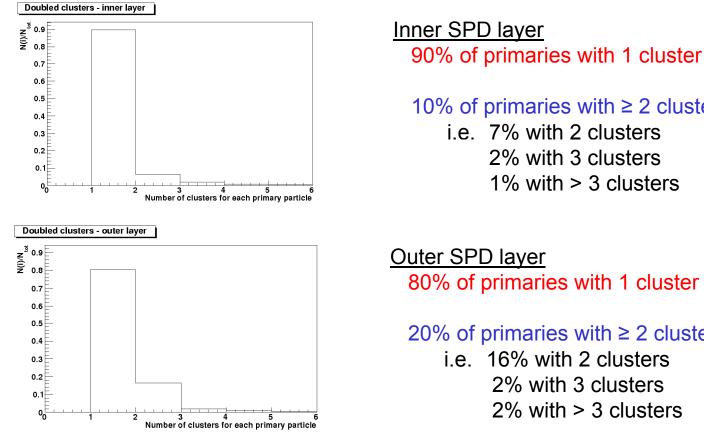
Half-stave assembly

- Defined the "half-stave level" in the geometry assembly
- A "stave" will be the assembly of two half-staves of different orientation
- GOAL:
 - define the half-stave as alignable volume in the ITS-SPD, since it is possible that the alignment of two HS in the same stave are done independently.

Conclusions and outlook

- "Central barrel" almost complete
 - defined 2 levels of alignable volumes (ladder, half-stave)
 - to be added: clips on outer layer staves (where necessary)
- End cones and services
 - actually not present
 - relevant information gathered from drawings/people
 - ...not trivial to organize this into a simple structure (coming soon)
- Materials
 - materials implemented as in the old version
 - consistency checks to be done
- Integration tests possible (simulations/checks with the new geometry already present

□ Changes in reconstructor classes (Cvetan):


- > tested as required:
 - same cluster number and coordinates as for old reco
- Cluster duplication:
 - > problem spotted within the tracklet analysis (M. Nicassio):
 - some fraction of SPD clusters are duplicated (≈ 10%)
 - possibly due to cluster unfolding or other (unwanted) features
 - quantitatively studied (see next slides)
 - still under investigation, other experts involved

SPD Offline **Other issues**

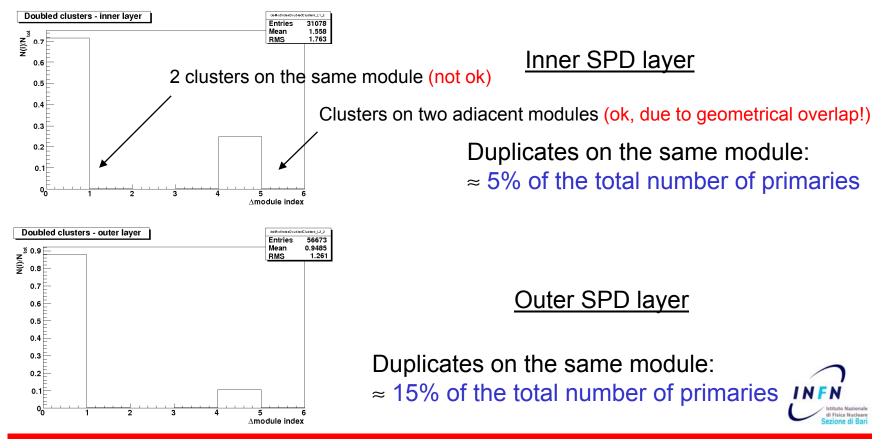
Number of clusters per layer, associated (by label) to a primary track

10% of primaries with \geq 2 clusters

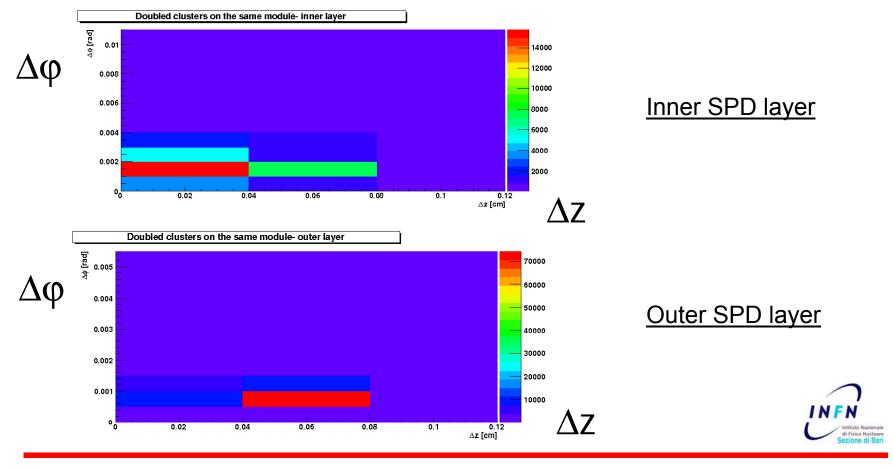
i.e. 7% with 2 clusters 2% with 3 clusters 1% with > 3 clusters

80% of primaries with 1 cluster

20% of primaries with \geq 2 clusters


i.e. 16% with 2 clusters 2% with 3 clusters 2% with > 3 clusters

Domenico Elia / INFN Bari


Difference between indices of each of the two clusters in a duplicate

Domenico Elia / INFN Bari

Difference (in units of pixels) between the two cluster centres

Domenico Elia / INFN Bari

ALICE offline week / October 8-12, 2007

Length of the clusters involved in a duplication

Domenico Elia / INFN Bari

ALICE offline week / October 8-12, 2007