TRD alignment with AliAlignmentTracks

Dariusz Miśkowiec, GSI Darmstadt
ALICE offline week, 10-Oct-2007
© intro
© optimizing alignment procedure
(2) determination of residual resolution
(3) summary

alignable objects in TRD

18 TRD supermodules

like /TRD/sm03 aligned by survey

540 TRD chambers like /TRD/sm03/st3/pl0 aligned with tracks

alignment study via simulation: general idea

alignment study via simulation: general idea

alignment procedure with AliAignmentTracks

practicing the alignment procedure with AliAlignmentTracks

(30 k pp events with ideal alignment (Silvia Masciocchi's production)
(8.) 300-400 tracks with pt $>0.8 \mathrm{GeV}$ in each TRD chamber
(6) pick one particular TRD chamber and align it to TPC
(4) look at the residuals along phi

* the peak should be at zero and as narrow as possible

AliAlignmentTracks with AliTrackResidualsChi2

data/1054/AliTrackPoints.root
AllTrackResidualsChi2
Aligning volumes
18446 (TRD/sm02/st4/pl0)
to reference volumes
14338 (TPC/EndcapA/Sector3/InnerChamber) 14356 (TPC/EndcapC/Sector3/InnerChamber) 16386 (TPC/EndcapA/Sector3/OuterChamber) 16404 (TPC/EndcapC/Sector3/OuterChamber)

Result
shift in phi 0.029
shift in z $\quad 0.036$
shift in r 0.235 tilt in phi 0.2477 tilt in $z \quad-0.0135$ tilt in $\mathrm{r} \quad 0.0283$

AliAlignmentTracks with AliTrackResidualsFast

data/1054/AliTrackPoints.root AliTrackResidualsFast

Aligning volumes

18446 (TRD/sm02/st4/pl0)
to reference volumes
14338 (TPC/EndcapA/Sector3/InnerChamber) 14356 (TPC/EndcapC/Sector3/InnerChamber) 16386 (TPC/EndcapA/Sector3/OuterChamber) 16404 (TPC/EndcapC/Sector3/OuterChamber)

Result
shift in phi 0.027 shift in z $\quad 0.037$ shift in $r \quad 0.233$ tilt in phi 0.2464 tilt in $z \quad-0.0022$ tilt in $\mathrm{r} \quad 0.0284$

AliAlignmentTracks with AliTrackResidualsLinear

z0
data/1054/AliTrackPoints.root
AliTrackResidualsLinear
Aligning volumes
18446 (TRD/sm02/st4/pl0)
to reference volumes
14338 (TPC/EndcapA/Sector3/InnerChamber) 14356 (TPC/EndcapC/Sector3/InnerChamber) 16386 (TPC/EndcapA/Sector3/OuterChamber) 16404 (TPC/EndcapC/Sector3/OuterChamber)

Result
shift in phi 0.418
shift in $z \quad-0.830$
shift in $\mathrm{r} \quad 0.400$ tilt in phi -0.0701
$\begin{array}{ll}\text { tilt in } z & -0.1370\end{array}$ tilt in $\mathrm{r} \quad-0.0157$

AliTrackResiduals daughters compared

	time per ch	fixing params	ignoring outliers	working?
AliTrackResidualsChi2	34 s	4	-	4
AliTrackResidualsFast	3 s	-	-	4
AliTrackResidualsLinear	8 s	4	4	$*$

* setting fraction to 100% does not help changing σ_{x} from 100 to 1 cm does not help

external (to AliTrackResiduals) removal of outliers

data/1054/AliTrackPoints.root AliTrackResidualsFast

Aligning volumes

18444 (TRD/sm02/st2/pl0)
to reference volumes
14338 (TPC/EndcapA/Sector3/InnerChamber) 14356 (TPC/EndcapC/Sector3/InnerChamber) 16386 (TPC/EndcapA/Sector3/OuterChamber) 16404 (TPC/EndcapC/Sector3/OuterChamber)

Result

shift in phi -0.031 shift in $\mathbf{z} \quad 0.330$ shift in r $\quad 0.276$ tilt in phi -0.0019 tilt in $z \quad 0.1338$
tilt in $\mathrm{r} \quad-0.0110$

Does it work for non-zero initial misalignment, too?

(4) use 10 events with 200 particles with pt > 1 GeV sent in the direction of one particular stack $\rightarrow 400$ tracks used to align one chamber
(3) introduce misalignment at the beginning

fX of the alignment procedure
(3) look at the residuals before alignment (just to get some feeling)
(3) look at the residuals after alignment are they zero centered?

1 cm shift in phi - before alignment

$\mathrm{x0}$

data/1051/AliTrackPoints.root AliTrackResidualsFast

Aligning volumes

 18436 (TRD/sm00/st4/pl0)to reference volumes
14336 (TPC/EndcapA/Sector1/InnerChamber) 14354 (TPC/EndcapC/Sector1/InnerChamber) 16384 (TPC/EndcapA/Sector1/OuterChamber) 16402 (TPC/EndcapC/Sector1/OuterChamber)

Result
shift in phi 0.014
shift in $z \quad-0.024$
shift in r 0.048
tilt in phi -0.0535
tilt in $z \quad-0.0823$
tilt in $\mathrm{r} \quad 0.0001$

after alignment

5 cm shift in z - before alignment

data/1051/AliTrackPoints.root
AliTrackResidualsFast

Aligning volumes

18436 (TRD/sm00/st4/pl0)
to reference volumes
14336 (TPC/EndcapA/Sector1/InnerChamber) 14354 (TPC/EndcapC/Sector1/InnerChamber) 16384 (TPC/EndcapA/Sector1/OuterChamber) 16402 (TPC/EndcapC/Sector1/OuterChamber)

Result

shift in phi -0.025
shift in $z \quad 1.114$
shift in $\mathrm{r} \quad 0.468$
tilt in phi 0.1196
tilt in $\mathrm{z} \quad 0.0205$
tilt in $\mathrm{r} \quad-0.0436$

after alignment

data/1051/AliTrackPoints.root
AliTrackResidualsFast

Aligning volumes

 18436 (TRD/sm00/st4/pl0)to reference volumes
14336 (TPC/EndcapA/Sector1/InnerChamber) 14354 (TPC/EndcapC/Sector1/InnerChamber) 16384 (TPC/EndcapA/Sector1/OuterChamber) 16402 (TPC/EndcapC/Sector1/OuterChamber)

Result

shift in phi 0.014 shift in $z \quad-0.024$ shift in $\mathrm{r} \quad 0.048$ tilt in phi -0.0535 tilt in z $\quad-0.0836$ tilt in $\mathrm{r} \quad 0.0000$

1 cm shift in r - before alignment

$\mathrm{x0}$

data/1051/AliTrackPoints.root AliTrackResidualsFast

Aligning volumes

 18436 (TRD/sm00/st4/pl0)to reference volumes
14336 (TPC/EndcapA/Sector1/InnerChamber) 14354 (TPC/EndcapC/Sector1/InnerChamber) 16384 (TPC/EndcapA/Sector1/OuterChamber) 16402 (TPC/EndcapC/Sector1/OuterChamber)

Result
shift in phi 0.014
shift in $z \quad-0.025$
shift in $r \quad 0.048$
tilt in phi -0.0543
tilt in $z \quad-0.0830$
tilt in $\mathrm{r} \quad 0.0001$

after alignment

5 deg tilt in phi - before alignment

data/1051/AliTrackPoints.root
AliTrackResidualsFast

Aligning volumes

 18436 (TRD/sm00/st4/pl0)to reference volumes
14336 (TPC/EndcapA/Sector1/InnerChamber) 14354 (TPC/EndcapC/Sector1/InnerChamber) 16384 (TPC/EndcapA/Sector1/OuterChamber) 16402 (TPC/EndcapC/Sector1/OuterChamber)

Result

shift in phi -0.206
shift in $\mathrm{z} \quad 0.841$
shift in $\mathrm{r} \quad-1.208$
tilt in phi -0.1587
tilt in $z \quad-0.0231$
tilt in $\mathrm{r} \quad 0.0158$

after alignment

data/1051/AliTrackPoints.root
AliTrackResidualsFast

Aligning volumes

 18436 (TRD/sm00/st4/pl0)to reference volumes
14336 (TPC/EndcapA/Sector1/InnerChamber) 14354 (TPC/EndcapC/Sector1/InnerChamber) 16384 (TPC/EndcapA/Sector1/OuterChamber) 16402 (TPC/EndcapC/Sector1/OuterChamber)

Result

shift in phi 0.014 shift in $z \quad-0.024$ shift in $\mathrm{r} \quad 0.048$ tilt in phi -0.0535 tilt in z $\quad-0.0836$ tilt in $\mathrm{r} \quad 0.0000$

5 deg tilt in z-before alignment

data/1051/AliTrackPoints.root AliTrackResidualsFast

Aligning volumes

 18436 (TRD/sm00/st4/pl0)to reference volumes
14336 (TPC/EndcapA/Sector1/InnerChamber) 14354 (TPC/EndcapC/Sector1/InnerChamber) 16384 (TPC/EndcapA/Sector1/OuterChamber) 16402 (TPC/EndcapC/Sector1/OuterChamber)

Result

shift in phi 0.025 shift in $z \quad-0.789$ shift in $\mathrm{r} \quad-0.001$ tilt in phi 0.1708 tilt in $z \quad 0.2926$ tilt in $\mathrm{r} \quad-0.0048$

after alignment

0.2 deg tilt in r - before alignment

$\mathrm{x0}$

data/1051/AliTrackPoints.root
AliTrackResidualsFast

Aligning volumes

 18436 (TRD/sm00/st4/pl0)to reference volumes
14336 (TPC/EndcapA/Sector1/InnerChamber) 14354 (TPC/EndcapC/Sector1/InnerChamber) 16384 (TPC/EndcapA/Sector1/OuterChamber) 16402 (TPC/EndcapC/Sector1/OuterChamber)

Result
shift in phi 0.015 shift in $z \quad-0.023$ shift in r 0.050 tilt in phi -0.0534 tilt in $\mathrm{z} \quad-0.0822$ tilt in $\mathrm{r} \quad 0.0001$

after alignment

alignment study via simulation: general idea

resolution: results of running alignment on ideal data

... and how they compare to our "canonical" values

canonical values for PDC06:

$\begin{gathered} \text { rdphi } \\ \text { (mm) } \end{gathered}$	$\underset{(\mathrm{mm})}{\mathrm{dz}}$	$\begin{gathered} \mathrm{dr} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { rot phi } \\ (m r) \end{gathered}$	$\begin{aligned} & \text { rot } z \\ & \text { (mr) } \end{aligned}$	$\begin{aligned} & \text { rot r } \\ & \text { (mr) } \end{aligned}$	
3	3	3	0.4	2	0.4	supermodule initial
1	1	1	1	1	0.7	chamber initial
0.02	0.03	0.07	0.3	0.3	0.1	chamber residual

resolution observed when aligning 40 TRD chambers using 100 k events simulated with ideal geometry
0.09
0.70
0.25
0.8
0.8
0.2
factor
5
25
4
3
3
2

summary and next steps

(\$4) AliAlignmentTracks with AliTrackResidualsFast works reasonably
© residual misalignment probably somewhat larger than guessed
(2) alignment resolution related to the width of the residual \rightarrow in many cases playing with one chamber is sufficient

under investigation

(*) more optimization: pt cut, B field, scaling with statistics...
(230 impact on efficiency and momentum resolution
related subjects
(잔 AliAlignObj storing local misalignment rather than global

backup

AliTRDalignment class tool to manipulate TRD alignment sets

(3) converting between different file formats
© generating random sets for simulation
© reporting and visualization

processing survey data with AliTRDalignment

© What is being surveyed? Four survey points at each end of each supermodule. Unique names:
TRD_ sm08 a/c l/h 0/1
sm\# z r phi

(3) Survey file - ascii file in Alice-wide standard format

```
> Title:
ALICE - TRD Measurement of the first inserted TRD Supermodule 08
> Date:
14/12/2007
> Data:
TRD_sm08ah1 -3.6504 0.3337 3.5311 M 3
TRD_sm08aho -3.5451 0.9294 3.5306 M 3
```


processing survey data with AliTRDalignment

© AliTRDalignment a
create alignment object
© a.ReadSurveyReport("Alice_TRD_5061.txt") parse survey standard ascii file, decode and store the survey x, y, z, error
© a.SurveyToAlignment(8,"111000"); find such values of the 6 alignment parameters that, when applied to supermodule 8, minimize the chi-squared between the nominal and the measured positions of survey points.

processing survey data with AliTRDalignment

comparison of Dec-2006 survey with nominal positions of survey points in local sm frame

processing survey data with AliTRDalignment

alignment params of supermodule 08 deduced from Dec-2006 survey

processing survey data with AliTRDalignment

shift in z - caused by the survey target offset

The coordinates given in this report are given for the center of the survey target and not for the contact surface. The following survey target has been used for the measurement of the TRD reference holes:

\rightarrow nominal positions of the survey points in AliTRDalignment modified to account for the survey target offset of 20 mm

processing survey data with AliTRDalignment

" r "-coordinate of the two surveyed points:

365.25 cm
 from survey

365.75 cm from drawings (Bernd)
$367.10 \mathrm{~cm} \quad$ from offline (my guess, based on BTRD being 779 mm thick)

