ZDC status report: update C. Oppedisano

RECONSTRUCTION ALGORITHM CALIBRATION OBJECT ESD STRUCTURE ONGOING TASKS

IN N

ZDC RECONSTRUCTION (I)

ZDC reconstruction relies on the parameterization of various correlations:EzDC vs. N_{spec}, E_{ZDC} vs. b and E_{ZEM} vs. N_{spec}(see PPR vol.II, par. 6.1.2)

Due to fragments production these correlations have 2 branches corresponding to central and peripheral event samples

The two branches of N_{spec} vs. E_{ZDC} spectra are fitted separately, requiring the same values for the 2 fitting functions for N_{spec} = N_{spec, MAX}

IN N

ZDC RECONSTRUCTION (II)

Inverting these 2 functions one gets two possible N_{spec} values for each experimentally measured E_{ZDC} value

Using the ZEM signal, N_{spec} from one branch of events can be correctly determined since E_{ZEM} is a monotonic function of N_{spec}

INTR

CALIBRATION DATA

Besides calibration data needed for pedestal subtraction and energy calibration, new data members needed for reconstruction have been added to AliZDCCalibData class

// Co	efficients for tower	calibration					
Float_t	fZN1EqualCoeff[5];	// Equalization coefficients for ZN1 PTMs					
Float_t	fZP1EqualCoeff[5];	// Equalization coefficients for ZN1 PTMs					
Float_t	fZN2EqualCoeff[5];	// Equalization coefficients for ZN1 PTMs					
Float_t	<pre>fZP2EqualCoeff[5];</pre>	// Equalization coefficients for ZN1 PTMs					
// Co	// Coefficients for centrality selection from ZEM signal						
Float_t	fZEMEndValue;	// End point value of ZEM energy spectrum					
Float_t	fZEMCutFraction;	// Fraction of ZEM energy spectrum used to cut					
Float_t	fDZEMSup;	// Upper value of E_{ZDC} vs.ZEM correlation					
Float_t	<pre>fDZEMInf;</pre>	// Lower value of ${\rm E}_{\rm ZDC}$ vs.ZEM correlation					
// Parameters from EZDC vs. Nspec correlation							
Float_t	fEZN1MaxValue;	// Max value of ZN1 vs. N _{spec} n correlation					
Float_t	fEZP1MaxValue;	// Max value of ZP1 vs. N _{spec} p correlation					
Float_t	fEZDC1MaxValue;	// Max value of ZDC1 vs. N_{spec} n+p correlation					
Float_t	fEZN2MaxValue;	// Max value of ZN2 vs. N _{spec} n correlation					
Float_t	fEZP2MaxValue;	// Max value of ZP2 vs. N _{spec} p correlation					
Float_t	fEZDC2MaxValue;	// Max value of ZDC2 vs. N_{spec} n+p correlation					

Coefficients needed to calibrate the response in different towers of each ZDC

// Coe	fficients for tower	cal	ibration				
Float_t	fZN1EqualCoeff[5];		Equalization	coefficients	for	ZN1	PTMs
Float_t	fZP1EqualCoeff[5];	//	Equalization	coefficients	for	ZN1	PTMs
Float_t	fZN2EqualCoeff[5];	//	Equalization	coefficients	for	ZN1	PTMs
Float_t	fZP2EqualCoeff[5];	//	Equalization	coefficients	for	ZN1	PTMs

➡ source: cosmic data

the peak given by a single photoelectron is used to calibrate the 5 PMTs of each hadronic ZDC

DA needed to process cosmic data ready but still to be committed (done by end of October)

Parameters needed to reconstruct centrality variables from EzDC

```
// --- Coefficients for centrality selection from ZEM signal
Float_t fZEMEndValue; // End point value of ZEM energy spectrum
Float_t fZEMCutFraction; // Fraction of ZEM energy spectrum used to cut
Float_t fDZEMSup; // Upper value of E<sub>ZDC</sub>vs. ZEM correlation
Float_t fDZEMInf; // Lower value of E<sub>ZDC</sub> vs. ZEM correlation
```

➡source: ZEM signal spectrum (not energy calibrated!)

+ E_{ZDC} vs. ZEM signal correlation

fZEMEndValue from a fit of the spectrum (knee of the distribution)

■ fZEMCutFraction, fDZEMSup and fDZEMInf from E_{ZDC} vs. ZEM signal correlation

Parameters needed to reconstruct centrality variables from E_{zpc}

```
// --- Parameters from EZDC vs. Nspec correlation
Float_t fEZN1MaxValue; // Max value of ZN1 vs. N<sub>spec</sub> n correlation
Float_t fEZP1MaxValue; // Max value of ZP1 vs. N<sub>spec</sub> p correlation
Float_t fEZDC1MaxValue; // Max value of ZDC1 vs. N<sub>spec</sub> n correlation
Float_t fEZP2MaxValue; // Max value of ZN2 vs. N<sub>spec</sub> n correlation
Float_t fEZP2MaxValue; // Max value of ZP2 vs. N<sub>spec</sub> n correlation
Float_t fEZDC2MaxValue; // Max value of ZDC2 vs. N<sub>spec</sub> n+p
correlation
```

⇒ source: E_{ZDC} vs. "true" N_{spec} correlation, built using ZEM information the no. of DETECTED spectators derived from E_{ZDC} is "biased" by fragmentation $N_{spec} = E_{ZDC}$ [TeV]/2.76 DAs to be implemented (done by end of October)

INTR

EVENT RECONSTRUCTION (I)

CALIBRATION DATA

RECO

EVENT RECONSTRUCTION (II)

According to ZEM signal the centrality variables are evaluated from different parameterizations

ZEM > ZEMcut+DZEMSup ➡parametrization of the central branch of correlations vs. E_{zDC}

ZEM < ZEMcut-DZEMInf ➡parametrization of the peripheral branch of correlations vs. E_{zDC}

ZEM > ZEMcut-DZEMInf && <ZEMcut+DZEMInf → parametrization from correlations vs. ZEM

MODEL DEPENDENCY

Extrapolation of centrality variables relies on models!

Parametrized functions from HIJING + fragmentation model:

 \blacksquare central and peripheral branches of N_{spec} vs. E_{ZDC} for ZN, ZP and ZDC

(+) (-)
$$N_{spec} = \frac{-p_1 \pm \sqrt{p_1^2 - 4p_2(p_0 - E_{ZDC})}}{2p_2}$$

- **i** central and peripheral branches of b vs. E_{ZDC} $b = p_0 + p_1 E_{ZDC} + p_2 E_{ZDC}^2 + p_3 E_{ZDC}^3$ $b = p_0 + p_1 E_{ZDC} + p_2 E_{ZDC}^2$
- N_{spec} vs. ZEM signal for n, p and n+p N_{spec} = $p_0 + p_1(ZEM) + p_2(ZEM)^2$

```
b vs. ZEM signal

b = p_0 + p_1(ZEM) + p_2(ZEM)^2 + p_3(ZEM)^3 + p_4(ZEM)^4 + p_5(ZEM)^5
```

Now the parametrized distributions are in AliZDCReconstruction constructor

Distributions will be fitted once from experimental data and these fit functions will be used to provide centrality variables The extrapolation still depends on fragmentation model

INTR

New data members in AliESDZDC class: energy measured in the 4 sectors for the 2 neutron calorimeters

Double_t	<pre>fZN1TowerEnergy[4];//</pre>	reconstructed energy in 4 neutron ZDC towers
Double_t	<pre>fZN2TowerEnergy[4];//</pre>	reconstructed energy in 4 neutron ZDC towers
Double32_t	fZDCN1Energy; //	reconstructed energy in the neutron ZDC
Double32_t	fZDCP1Energy; //	reconstructed energy in the proton ZDC
Double32_t	fZDCN2Energy; //	reconstructed energy in the neutron ZDC
Double32_t	fZDCP2Energy; //	reconstructed energy in the proton ZDC
Double32_t	fZDCEMEnergy; //	signal in the electromagnetic ZDC
Int_t	<pre>fZDCParticipants; //</pre>	number of participants estimated by the ZDC

- ➡ provide event by event the centroid of the spectator neutrons spot
- ➡ reconstruct the 1st order event plane
- ➡ In AliESDEvent a method GetZDCCentroid to provide the spot coord. will be added

$$x = a_0 \frac{\sum_{i=1}^{4} E_i^{\alpha} x_i}{\sum_{i=1}^{4} E_i^{\alpha}} \qquad y = a_0 \frac{\sum_{i=1}^{4} E_i^{\alpha} y_i}{\sum_{i=1}^{4} E_i^{\alpha}}$$

ONGOING TASKS (I)

DAQ DA

T	Tasks (Inactive) Gantt Chart Task Logs									
	Show: Tincomplete Tasks Only									
	Pin	Log P	Work	Task Name	Task Owner	Assigned Users	Start Date	Done Date	Expected Finish Date	Last Update
6	•	Log		🕞 ZDC (136)	Chiara.Oppedisano	-	01/01/2006	-	01/11/2007	-
6	9	Log	~		Chiara.Oppedisano	-	01/01/2006	28/02/2007	05/03/2007	-
6	9	Log		Calibration (1092)	Chiara.Oppedisano	-	01/01/2006	-	01/11/2007	-
6	9	Log	~	D Requirements (1104)	Chiara.Oppedisano	-	01/01/2006	03/10/2006	12/12/2006	-
5	9	Log		Online (1120)	Chiara.Oppedisano	-	01/01/2006	-	01/11/2007	-
6	9	Log	~	preprocessor algorithm (1112)	Chiara.Oppedisano	-	01/01/2006	01/03/2007	31/08/2006	-
6	9	Log	~	Configuration: names of DCS data points: prototype (1115)	Chiara.Oppedisano	-	01/01/2006	07/07/2006	30/01/2007	-
6	9	Log	•	DAQ DA (1121)	Chiara.Oppedisano	-	01/01/2006	-	01/11/2007	-
ø	•	Log	~	DAQ FXS Output files (1123)	Chiara.Oppedisano	-	01/01/2006	28/02/2007	30/11/2006	-
J	•	Log	~	DCS FXS Output files (1124)	Chiara.Oppedisano	-	01/01/2006	05/03/2007	30/11/2006	-
6	9	Log	~	HLT DA (1575)	Chiara.Oppedisano	-	20/02/2007	21/02/2007	05/03/2007	-
6	9	Log	~	HLT FXS Output files (1576)	Chiara.Oppedisano	-	20/02/2007	21/02/2007	05/03/2007	-
6		Log	~	Dffline (1487)	Chiara.Oppedisano	-	09/02/2007	08/03/2007	05/03/2007	-

☑ already committed DAs (for pedestal subtraction and energy calibration coefficient calculation) are waiting to be tested by the DAQ expert (aware from last Offline week!)

□ missing DAs (needed to evaluate parameters for centrality reconstruction) implemented, tested and committed by end of October

ONGOING TASKS (II)

QA and geometry

Log		Quality Assurance (1399)	Chiara.Oppedisano	-	01/01/2006	-	31/10/2007	-
Log	~	Drovide name of contact tor MC data quality control (1400)	Chiara.Oppedisano	-	01/01/2006	01/08/2006	01/08/2006	-
Log		ESD QA (1401)	Chiara.Oppedisano	-	31/01/2007	-	31/10/2007	-
Log		Digit QA (1402)	Chiara.Oppedisano	-	31/01/2007	-	31/10/2007	-
Log		Pre-production validation (1437)	Chiara.Oppedisano	-	01/02/2007	-	31/10/2007	-
Log		Code quality (1440)	Chiara.Oppedisano	-	01/02/2007	-	31/10/2007	-
Log	~	Preconstruction (1580)	Chiara.Oppedisano	-	01/01/2006	28/08/2007	30/09/2007	-
Log	~	Simulation (1581)	Chiara.Oppedisano	-	01/01/2006	15/02/2006	15/02/2006	-
Log			Chiara.Oppedisano	-	20/02/2007	-	30/09/2007	
Log	1	Geometry as installed (1578)	Chiara.Oppedisano	Roberto.Gemme (50%)	20/02/2007	-	30/09/2007	-

$\hfill\square$ ESD and digit QA by the end of October

□ preliminary version of the geometry "as installed" (by R. Gemme) is under debug. Hopefully it will be working by the end of October

CONCLUSIONS

CALIBRATION

- calibration object finalized
- use of calibration object in event reconstruction completed

RECONSTRUCTION

• reconstruction algorithm under final tests (something still remains to be tested...)

ESD

- new ESD structure implemented
- AliESDEvent::GetCentroid method to be committed

Open question...

- where to put the parametrized function
- ...not in calibration object since in principle they don't change over the whole run (they depends only on the ZDC energy response)

A production of Pb-Pb with PIXEL+ZDC+forward detectors (T0, V0, FMD, PMD) is foreseen to study the multiplicity production as a function of centrality estimated with the ZDC

