

ANTIMATTER IN THE LAB

Chloé Malbrunot CERN

Content

LECTURE \# 1 (This lecture)

- What is antimatter?
- Some historical reminders
- Discrete symmetries
- Primordial antimatter search

LECTURE \# 2

- Antiprotons at low energies : cooling and trapping
- Experiments at the AD : exotic atoms made of antimatter
- Antihydrogen : a tool to study matter-antimatter asymmetry
- Everyday's application of antimatter

What is antimatter?

+ force carriers

What is antimatter?

What is antimatter?

$\mathrm{E}=\mathrm{mc}^{\mathbf{2}}$

What is antimatter?

$\mathrm{E}=\mathrm{mc}^{2}$

Matter - Antimatter asymmetry

Matter - Antimatter asymmetry

Matter - Antimatter asymmetry

Dark Energy
 Accelerated Expansion

Nig

Dark Energy
 Accelerated Expansion

Afterglow Light
Pattern 380,000 yrs.

Dark Ages

Development of Galaxies, Planets, etc.

Sakharov, 1967:

- "Baryon number violation", i.e. $n_{B}-n_{\bar{B}}$ is not constant
- "C and CP violation" : if CP is conserved for a reaction which generates a net number of baryons over anti-baryons there would be a CP conjugate reaction generating a net number of anti-baryons.
- "Departure from thermal equilibrium" : in thermal equilibrium any baryon number violating process will be balanced by the inverse reaction

1st Stars about 400 million yrs.

Big Bang Expansion
13.7 billion years

The ${ }^{66} \mathrm{BIG}{ }^{99}$ questions

Excerpt of the list containing the open questions in particle physics:

* Why is the Higgs boson so light (so-called "naturalness" or "hierarchy" problem) ?
- What is the origin of the matter-antimatter asymmetry in the Universe?
- Why 3 fermion families? Why do neutral leptons, charged leptons and quarks behave differently?
- What is the origin of neutrino masses and oscillations ?
- What is the composition of dark matter (23% of the Universe) ?
- What is the cause of the Universe's accelerated expansion (today: dark energy ? primordial: inflation ?)
- Why is Gravity so weak ?

Frontiers of Particle Physics

The first antimatter discovery

1932 : Discovery of the positron (Nobel Prize shared with V. Hess in 1936)

C. Anderson

In Cosmic Rays using a Cloud Chamber

Some Bits of History : the Dirac eq.

1928: The Dirac equation (Nobel Prize in 1933)

$$
\begin{aligned}
& E=\frac{p^{2}}{2 m} \rightarrow i \hbar \frac{\partial}{\partial t} \psi=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi \begin{array}{c}
E \rightarrow i \hbar \frac{\partial}{\partial t} \\
p \rightarrow-i \hbar \nabla
\end{array} \\
& H \psi=(\alpha \cdot \mathbf{P}+\beta m) \psi \\
& E^{2}=p^{2}+m^{2} \rightarrow-\hbar^{2} \frac{\partial^{2}}{\partial t^{2}} \psi=-\hbar^{2} \nabla^{2} \psi+m^{2} \psi
\end{aligned}
$$

Some Bits of History : the Dirac eq.

1928: The Dirac equation (Nobel Prize in 1933)

$$
\begin{aligned}
& E=\frac{p^{2}}{2 m} \rightarrow i \hbar \frac{\partial}{\partial t} \psi=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi{ }_{\substack{E \rightarrow i \hbar \frac{\partial}{\partial t} \\
p \rightarrow-i \hbar \nabla}}^{\substack{E}} \\
& H \psi=(\alpha \cdot \mathbf{P}+\beta m) \psi \\
& E^{2}=p^{2}+m^{2} \rightarrow-\hbar^{2} \frac{\partial^{2}}{\partial t^{2}} \psi=-\hbar^{2} \nabla^{2} \psi+m^{2} \psi \\
& H^{2} \psi=\left(\alpha_{i} P_{i}+\beta m\right)\left(\alpha_{j} P_{j}+\beta m\right) \psi \\
& \left.=\underset{=1}{\left(\alpha_{i}^{2}\right.} P_{i}^{2}+\underset{=\mathbf{0}}{\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right)} P_{i} P_{j}+\underset{=\mathbf{0}}{\left(\alpha_{i} \beta+\beta \alpha_{i}\right)} P_{i} m+\underset{=1}{\beta^{2}} m^{2}\right) \psi \quad H^{2} \psi=\left(\mathbf{P}^{\mathbf{2}}+m^{2}\right) \psi
\end{aligned}
$$

Some Bits of History : the Dirac eq.

1928: The Dirac equation (Nobel Prize in 1933)

$$
\begin{aligned}
& E=\frac{p^{2}}{2 m} \rightarrow i \hbar \frac{\partial}{\partial t} \psi=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi{ }^{\substack{E \rightarrow i \hbar \frac{\partial}{\partial t} \\
p \rightarrow-i \hbar \nabla}} \\
& H \psi=(\alpha \cdot \mathbf{P}+\beta m) \psi \\
& E^{2}=p^{2}+m^{2} \rightarrow-\hbar^{2} \frac{\partial^{2}}{\partial t^{2}} \psi=-\hbar^{2} \nabla^{2} \psi+m^{2} \psi \\
& H^{2} \psi=\left(\alpha_{i} P_{i}+\beta m\right)\left(\alpha_{j} P_{j}+\beta m\right) \psi
\end{aligned}
$$

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

$$
\begin{aligned}
& \gamma^{0}=\left(\begin{array}{cc}
I_{2} & 0 \\
0 & -I_{2}
\end{array}\right), \gamma^{1}=\left(\begin{array}{cc}
0 & \sigma_{x} \\
-\sigma_{x} & 0
\end{array}\right), \\
& \gamma^{2}=\left(\begin{array}{cc}
0 & \sigma_{y} \\
-\sigma_{y} & 0
\end{array}\right), \gamma^{3}=\left(\begin{array}{cc}
0 & \sigma_{z} \\
-\sigma_{z} & 0
\end{array}\right)
\end{aligned}
$$

Some Bits of History

1955 : Discovery of the antiproton (Nobel Prize to Chamberlain \& Segré in 1959)

Discovery at the Bevatron

Identified 60 events

Delta m/m ~5\%

Discrimination against other negatively charged particles via momentum \& velocity selection

Annihilation of an antiproton detected in a emulsion a year later : first $\overline{\mathrm{p}}-\mathrm{N}$ annihilation observed 35 events \longrightarrow proof of antimatter character

more antimatter

1932 Discovery of positron
1948 Discovery of positronium
1955 Discovery of antiproton
1956 Discovery of antineutron
1965 Discovery of antideuteron
1970 Discovery of anti- ${ }^{3} \mathbf{H e}$
1978 Discovery of anti-tritium
1996
First creation of relativistic antihydrogen atoms

more antimatter

First measurement of a difference between matter \& antimatter

1932 Discovery of positron

1948 Discovery of positronium

1955 Discovery of antiproton
1956 Discovery of antineutron

1965 Discovery of antideuteron

1970 Discovery of anti- ${ }^{3} \mathbf{H e}$

1978 Discovery of anti-tritium

First creation of relativistic antihydrogen atoms

Discrete Symmetries

P : Parity transformation. Invert every spatial coordinates
$\mathbf{P}(\mathrm{t}, \mathrm{r})=\mathbf{P}(\mathrm{t},-\mathrm{r})$
fermions and anti-fermions have opposite parity
1956: Yang and Lee realized that parity invariance had never been tested experimentally for weak interactions

Wu's experiment: recorded the direction of the emitted electron from a ${ }^{60} \mathrm{Co} \beta$-decay when the nuclear spin was aligned up and down

P symmetry is MAXIMALLY violated in weak decays

Discrete Symmetries

C : Charge Conjugaison. C reverses every internal additive quantum number (e.g. charge, baryon/lepton number, strangeness, etc.). Exchange of particle and antiparticle

$$
\mathrm{C}|\mathrm{p}\rangle=|\overline{\mathrm{p}}\rangle
$$

few particles are C-eigenstates

C is conserved in strong and EM interactions

$$
\begin{aligned}
& \mathrm{C}|n \gamma\rangle=(-1)^{n}|\gamma\rangle \\
& \mathrm{C}=(-1)^{l+s}
\end{aligned}
$$

$$
\mathrm{C}\left|\pi^{0}\right\rangle=\left|\pi^{0}\right\rangle
$$

$\pi^{0} \rightarrow 2 \gamma$ is allowed under CC
$\pi^{0} \rightarrow 3 \gamma$ is not allowed under CC

$$
<3.1 \times 10^{-8}
$$

RH anti-neutrino observed

Discrete Symmetries

CP Violation in Neutral Kaons:

$$
\begin{array}{lll}
K^{0}: & (d \bar{s}) & S=+1 \\
\bar{K}^{0}: & (s \bar{d}) & S=-1
\end{array} \quad \begin{aligned}
& \text { Production through } \Delta \mathrm{S}=0 \\
& \text { Decay through } \Delta \mathrm{S}=+/-1
\end{aligned}
$$

Start with a pure K^{0} beam

$$
|K(t)\rangle=\alpha(t)\left|K^{0}\right\rangle+\beta(t)\left|\bar{K}^{0}\right\rangle
$$

Discrete Symmetries

CP Violation in Neutral Kaons:

$$
\begin{array}{|lll}
\hline K^{0}: & (d \bar{s}) & S=+1 \\
\bar{K}^{0}: & (s \bar{d}) & S=-1 \\
\hline
\end{array}
$$

Production through $\Delta \mathrm{S}=0$
Decay through $\Delta S=+/-1$

Start with a pure K^{0} beam

$$
|K(t)\rangle=\alpha(t)\left|K^{0}\right\rangle+\beta(t)\left|\bar{K}^{0}\right\rangle
$$

CP Eigenstates :

$$
\begin{array}{|ll}
\left|K_{S}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right) & C P=+1 \\
\left|K_{L}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\right) & C P=-1 \\
\hline
\end{array}
$$

$$
\left|K_{S}\right\rangle \rightarrow 2 \pi, \quad C P=+1, \quad \tau \sim 0.9 \times 10^{-10} \mathrm{~s}
$$

$$
\text { cren summer student lecture. }\left|K_{L}\right\rangle \rightarrow 3 \pi, \quad C P=-1, \quad \tau \sim 0.5 \times 10^{-7} \mathrm{~s}
$$

Discrete Symmetries

Measured quantity :

$$
\left|\eta_{+-}\right|=\frac{\text { amplitude }\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right)}{\operatorname{amplitude}\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)} \sim 2.3 \times 10^{-3}
$$

Interferences : observed in modulation of the 2 pion signal

Discrete Symmetries

Measured quantity :

$$
\left|\eta_{+-}\right|=\frac{\text { amplitude }\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right)}{\text {amplitude }\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)} \sim 2.3 \times 10^{-3}
$$

Interferences : observed in modulation of the 2 pion signal

Semi-leptonic mode :

$$
\begin{array}{ll}
K_{L} \rightarrow e^{+}+\nu_{e}+\pi^{-} \\
K_{L} \rightarrow e^{-}+\overline{\nu_{e}}+\pi^{+} & \text {Discrimination criteria between } \\
\end{array}
$$

$$
\begin{gathered}
\Delta=\frac{\operatorname{rate}\left(K_{L} \rightarrow e^{+}+\nu_{e}+\pi^{-}\right)-\operatorname{rate}\left(K_{L} \rightarrow e^{-}+\overline{\nu_{e}}+\pi^{+}\right)}{\operatorname{rate}\left(K_{L} \rightarrow e^{+}+\nu_{e}+\pi^{-}\right)+\operatorname{rate}\left(K_{L} \rightarrow e^{-}+\overline{\nu_{e}}+\pi^{+}\right)} \\
\Delta \sim 0.3 \times 10^{-2}
\end{gathered}
$$

Discrete Symmetries

T: Time Reversal

@ CPLEAR

Time-Reversal asymmetry A_{T}, the observed difference between the rates for $\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$ and $\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$, divided by their sum, is plotted here as a function of the proper time interval τ between the creation of the neutral kaon in the CPLEAR facility at CERN and its subsequent decay from a state of opposite strangeness. The time is given in units of $\lambda_{S}=89.3 \mathrm{ps}$, the shorter of the two neutral-kaon lifetimes. The red line is the fitted average measured asymmetry, $(6.6 \pm 1.6) \times 10^{-3}$, in good
agreement with the theoretical expectation. (Adapted
from ref. 2.)

$$
\Delta=\frac{\operatorname{rate}\left(\bar{K}_{0} \rightarrow K_{0}\right)-\operatorname{rate}\left(K_{0} \rightarrow \bar{K}_{0}\right)}{\operatorname{rate}\left(\bar{K}_{0} \rightarrow K_{0}\right)+\operatorname{rate}\left(K_{0} \rightarrow \bar{K}_{0}\right)}
$$

Discrete Symmetries

T: Time Reversal

@ CPLEAR

Time-Reversal asymmetry A_{T}, the observed difference between the rates for $\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$ and $\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$, divided by their sum, is plotted here as a function of the proper time interval τ between the creation of the neutral kaon in the CPLEAR facility at CERN and its subsequent decay from a state of opposite strangeness. The time is given in units of $\lambda_{S}=89.3 \mathrm{ps}$, the shorter of the two neutral-kaon lifetimes. The red line is the fitted average measured asymmetry, $(6.6 \pm 1.6) \times 10^{-3}$, in good agreement with the theoretical expectation. (Adapted from ref. 2.)

$$
\Delta=\frac{\operatorname{rate}\left(\bar{K}_{0} \rightarrow K_{0}\right)-\operatorname{rate}\left(K_{0} \rightarrow \bar{K}_{0}\right)}{\operatorname{rate}\left(\bar{K}_{0} \rightarrow K_{0}\right)+\operatorname{rate}\left(K_{0} \rightarrow \bar{K}_{0}\right)}
$$

CERN PS complex 1996

LEP: Large Electron Positron collider SPS: Super Proton Synchrotron AAC: Antiproton Accumulator Complex ISOLDE: Isotope Separator OnLine DEvice PS: Proton Synchrotron
LEAR: Low Energy Antiproton Ring

1982-1996 : AAC
3 separate rings
AC, AA, LEAR
C. Malbrunot

Discrete Symmetries

T: Time Reversal

@ CPLEAR

Time-Reversal asymmetry A_{T}, the observed difference between the rates for $\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$ and $\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$, divided by their sum, is plotted here as a function of the proper time interval τ between the creation of the neutral kaon in the CPLEAR facility at CERN and its subsequent decay from a state of opposite strangeness. The time is given in units of $\lambda_{\mathrm{S}}=89.3 \mathrm{ps}$, the shorter of the two neutral-kaon lifetimes. The red line is the fitted average measured asymmetry, $(6.6 \pm 1.6) \times 10^{-3}$, in good agreement with the theoretical expectation. (Adapted from ref. 2.)

$$
\Delta=\frac{\operatorname{rate}\left(\bar{K}_{0} \rightarrow K_{0}\right)-\operatorname{rate}\left(K_{0} \rightarrow \bar{K}_{0}\right)}{\operatorname{rate}\left(\bar{K}_{0} \rightarrow K_{0}\right)+\operatorname{rate}\left(K_{0} \rightarrow \bar{K}_{0}\right)}
$$

CERN SUMMER STUDENT LECTURE - 2019 -

CERN PS complex 1996

East Area

LPI

$\square \mathrm{e}$
LIL

LEP: Large Electron Positron collider SPS: Super Proton Synchrotron AAC: Antiproton Accumulator Complex ISOLDE: Isotope Separator OnLine DEvice PS: Proton Synchrotron
LEAR: Low Energy Antiproton Ring
1982-1996 : AAC
3 separate rings AC, AA, LEAR

Since 2000 : all-in-one machine : AD
C. Malbrunot17

Discrete Symmetries

Summary:

	Interactions		
	Strong	EM	Weak
P	yes	yes	no
C	yes	yes	no
CP (or T)	yes	yes	~10^-3 1999 (2012) : Direct T Violation 2001: B decay (BELLE, BaBar) 2013 : strange B decay (LHCb)
CPT			

Discrete Symmetries

Summary:

	Interactions		
	Strong	EM	Weak
P	yes	yes	no
C	yes	yes	no
CP (or T)	yes	yes	~10^-3 1999 (2012) : Direct T Violation 2001: B decay (BELLE, BaBar) 2013 : strange B decay (LHCb)
CPT	yes	yes	yes

Discrete Symmetries

Observation of C, P, T, CP violation, what about CPT?
In the SM, CPT is conserved. So, if T is violated, CP is violated \& vice-versa

CPT Theorem :

A local, Lorenz invariant theory with canonical spin-statistics relation must be invariant with respect to CPT-transformation

```
J. Schwinger, Phys. Rev.82, }914\mathrm{ (1951);
G. Lüders, Kgl. Danske Vidensk. Selskab. Mat.-Fys. Medd.28, 5 (1954);
G. Lüders, Ann. Phys.2, 1 (1957);
W. Pauli, Nuovo Cimento,6, 204 (1957);
R. Jost, Helv. Phys. Acta30, }409\mathrm{ (1957);
F.J. Dyson, Phys. Rev.110, 579 (1958).
```

Implication : properties of matter \& antimatter particles should be the same

Tests of CPT Symmetry

Tests of CPT Symmetry

$$
\begin{array}{|l}
\begin{array}{l}
\text { Standard Model } \\
\text { Extension }
\end{array}\left(i \gamma^{\mu} D_{\mu}-m_{e}-a_{\mu}^{e} \gamma^{\mu}-b_{\mu}^{e} \gamma_{5} \gamma^{\mu}\right. \\
\left.-\frac{1}{2} H_{\mu \nu}^{e} \sigma^{\mu \nu}+i c_{\mu \nu}^{e} \gamma^{\mu} D^{\nu}+i d_{\mu \nu}^{e} \gamma_{5} \gamma^{\mu} D^{\nu}\right) \psi=0
\end{array}
$$

Search for Primordial Antimatter

IS THERE ANTIMATTER LEFT IN THE UNIVERSE?

Search for Primordial Antimatter

DIRECT SEARCHES IN COSMIC RAYS

Creation of Secondaries in IGM : Test source and propagation models for cosmic rays

A large part of positrons and antiprotons impinging on Earth are produced in high-energy interactions between cosmic rays nuclei with the interstellar medium. Their spectra can provide an insight on the origin, production and propagation of cosmic rays in our galaxy. Any observed flux larger than that predicted by the Leaky Box Model (LBM), the "standard" model of cosmic ray propagation, could indicate exotic sources of antimatter. The predictions of the propagation models are different above 10 GeV where more refined measurements are needed.

Balloon experiments

Results from CAPRICE/BESS

height of flight $=38 \mathrm{~km}$ (top of atmosphere)

PRL 84 (2000) 1078

Space experiments

PAMELA (satellite), AMS (space station)

- SEARCH FOR PRIMARY ANTIMATTER
e+, $\overline{\mathrm{p}}$, anti-alpha
Note : positrons are difficult to measure/interpret:
- radiative losses close to sources
- possibility of primary positron cosmic rays

Space experiments

PAMELA (satellite), AMS (space station)

- SEARCH FOR PRIMARY ANTIMATTER
e+, $\overline{\mathrm{p}}$, anti-alpha
Note : positrons are difficult to measure/interpret:
- radiative losses close to sources
- possibility of primary positron cosmic rays

CERN SUMMER STUDENT LECTURE - 2019 -

C. Malbrunot

Space experiments

Other sources :

- Modified Propagation of Cosmic Rays, Supernova Remnants, Pulsars

Cosmological Models

Distortions in the CMB:

- CMB would have been affected by late annihilations (if antimatter would have survived longer than expected) \& photons from the annihilation would contribute to the diffuse gamma rays

> If we accept the view of complete symmetry between positive and negative electric charge so far as concerns the fundamental laws of Nature, we must regard it rather as an accident that the Earth (and presumably the whole solar system), contains a preponderance of negative electrons and positive protons. It is quite possible that for some of the stars it is the other way about, these stars being built up mainly of positrons and negative protons. In fact, there may be half the stars of each kind. The two kinds of stars would both show exactly the same spectra, and there would be no way of distinguishing them by present astronomical methods.

Dirac Nobel lecture 1933

- $B=0$ universe is mostly excluded by standard cosmology scenarios based on CMB observation (annihilation at boundaries, at least for domains which are smaller than the size of the visible universe)

Cosmological Models

Big Bang Nucleosynthesis
Existence of antimatter during nucleosynthesis would have affected the formation of nuclei (annihilation, formation of $p \bar{p}$ etc.., annihilation gamma rays would photodesintegrate etc)

Estimate the baryon density from SBBN and CMB

Photons are final products of annihilation processes

$$
\eta=\left(\frac{N_{B}}{N_{\gamma}}\right)_{T=3 \mathrm{~K}} \quad \eta=\left(\frac{N_{B}-N_{\bar{B}}}{N_{\gamma}}\right)_{T=3 \mathrm{~K}}
$$

$$
\begin{gathered}
\eta_{S B B N}=(5.80 \pm 0.27) \times 10^{-10} \\
\eta_{C M B}=6.160_{-0.156}^{+0.153} \times 10^{-10}
\end{gathered}
$$

Summary

INITIAL POSTULATION OF ANTIMATTER THROUGH THE DIRAC EQUATION

 EXPERIMENTAL CONFIRMATION IN COSMIC RAYSPUZZLE OF MATTER -ANTIMATTER ASYMMETRY IN THE UNIVERSE

TRIGGERS PRECISE COMPARISON OF MATTER \& ANTIMATTER PROPERTIES

THROUGH TEST OF DISCRETE SYMMETRIES IN THE LAB

AND SEARCH OF PRIMORDIAL ANTIMATTER IN OUTER SPACE

Summary

INITIAL POSTULATION OF ANTIMATTER THROUGH THE DIRAC EQUATION

 EXPERIMENTAL CONFIRMATION IN COSMIC RAYSPUZZLE OF MATTER -ANTIMATTER ASYMMETRY IN THE UNIVERSE

TRIGGERS PRECISE COMPARISON OF MATTER \& ANTIMATTER PROPERTIES

THROUGH TEST OF DISCRETE SYMMETRIES IN THE LAB

AND SEARCH OF PRIMORDIAL ANTIMATTER IN OUTER SPACE

LECTURE \# 2 : EXPERIMENTS AND APPLICATIONS OF LOW ENERGY
ANTIMATTER

