

ANTIMATTER IN THE LAB

Chloé Malbrunot CERN

CERN Summer student lecture 2019

Content

LECTURE # 1 (This lecture)

- What is antimatter?
- Some historical reminders
- Discrete symmetries
- Primordial antimatter search

LECTURE # 2 (This lecture)

- Antiprotons at low energies : cooling and trapping
- Experiments at the AD : exotic atoms made of antimatter
- Antihydrogen : a tool to study matter-antimatter asymmetry
- Everyday's application of antimatter

Production of antimatter

The case of antiprotons

$$p + p \to \bar{p} + p + p + p$$

$$\sqrt{s} = \sqrt{2m_p^2 + 2E_p m_p}$$

Pair production : Threshold energy at 5.6 GeV

Bevatron was right at threshold when producing the first antiprotons !

Need higher proton energies to produce more antiprotons

Antiproton Cooling

Production at 26 GeV/c

Maximum production at 3.7 GeV/c (~ collection momentum) Sharp fall-off around the peak

CERN SUMMER STUDENT LECTURE - 2019 -

FIG. 1. Normalized antiproton yield (antiprotons per proton) at 26 GeV/c proton-beam momentum. The normalization is chosen so that the yield is one at the maximum.

C. Malbrunot

Antiproton Cooling

Cooling : reduce phase space and increase phase-space density

 E_h , E_v : horizontal, vertical emittances L: longitudinal spread N: number of particles $\Delta p/p$: momentum spread

Cooling methods :

- Stochastic cooling
- Electron cooling

Electron cooling

Electron cooling

Antiproton momentum, p [MeV/c] 300 100 Cooling length, L_{cool} [m] 2.2 2.2 $L_{cool}/circumference, \eta_c$ 0.0116 0.0116 Electron energy, U_{ecin} [keV] 25.48 2.894 Electron current, I_e [A] 3.5 0.5 (0.1) Perveance of electron beam, p_g [10 ⁻⁶ AV ^{-3/2}] 0.58 2.6 (0.52) Electron beam radius [mm] 25 25 Space charge potential, U_{Sp} [kV] 1.034 424.6 Cathode voltage, U_{cath} [kV] 26.52 3.318 Betatron functions at cooler, β_{HV} [m] 6.0 6.0 Initial, final emittances $\varepsilon_i/\varepsilon_f$ [π mm·mrad] 33/2 15/1 Cooling time constant, τ_c [s] 6.3 0.14 (0.7)				
Cooling length, L_{cool} [m]2.22.2 $L_{cool}/circumference, \eta_c$ 0.01160.0116Electron energy, U_{ecin} [keV]25.482.894Electron current, I_e [A]3.50.5 (0.1)Perveance of electron beam, p_g $[10^{-6} \text{ AV}^{-3/2}]$ 0.582.6 (0.52)Electron beam radius[mm]2525Space charge potential, U_{Sp} [kV]1.034424.6Cathode voltage, U_{cath} [kV]26.523.318Betatron functions at cooler, β_{HV} [m]6.06.0Initial, final emittances $\varepsilon_i/\varepsilon_f$ [π mm·mrad]33/215/1Cooling time constant, τ_c [s]2.20.05 (0.3)Total cooling time, t_c [s]6.30.14 (0.7)	Antiproton momentum, p	[MeV/c]	300	100
$L_{cool}/circumference, \eta_c$ 0.01160.0116Electron energy, U_{ecin} [keV]25.482.894Electron current, I_e [A]3.50.5 (0.1)Perveance of electron beam, p_g [10-6 AV-3/2]0.582.6 (0.52)Electron beam radius[mm]2525Space charge potential, U_{Sp} [kV]1.034424.6Cathode voltage, U_{cath} [kV]26.523.318Betatron functions at cooler, β_{HV} [m]6.06.0Initial, final emittances $\varepsilon_i / \varepsilon_f$ [π mm·mrad]33/215/1Cooling time constant, τ_c [s]6.30.14 (0.7)	Cooling length, Lcool	[m]	2.2	2.2
Electron energy, U_{ecin} [keV]25.482.894Electron current, I_e [A]3.50.5 (0.1)Perveance of electron beam, p_g $[10^{-6} \text{ AV}^{-3/2}]$ 0.582.6 (0.52)Electron beam radius[mm]2525Space charge potential, U_{Sp} [kV]1.034424.6Cathode voltage, U_{cath} [kV]26.523.318Betatron functions at cooler, β_{HV} [m]6.06.0Initial, final emittances $\varepsilon_i / \varepsilon_f$ [π mm·mrad]33/215/1Cooling time constant, τ_c [s]2.20.05 (0.3)Total cooling time, t_c [s]6.30.14 (0.7)	$L_{cool}/circumference, \eta_c$		0.0116	0.0116
Electron current, I_e [A]3.50.5 (0.1)Perveance of electron beam, p_g [10-6 AV-3/2]0.582.6 (0.52)Electron beam radius[mm]2525Space charge potential, U_{Sp} [kV]1.034424.6Cathode voltage, U_{cath} [kV]26.523.318Betatron functions at cooler, β_{HV} [m]6.06.0Initial, final emittances $\varepsilon_i/\varepsilon_f$ [π mm·mrad]33/215/1Cooling time constant, τ_c [s]6.30.14 (0.7)	Electron energy, U_{ecin}	[keV]	25.48	2.894
Perveance of electron beam, p_g $[10^{-6} \text{ AV}^{-3/2}]$ 0.58 $2.6 (0.52)$ Electron beam radius [mm] 25 25 Space charge potential, U_{Sp} [kV] 1.034 424.6 Cathode voltage, U_{cath} [kV] 26.52 3.318 Betatron functions at cooler, β_{HV} [m] 6.0 6.0 Initial, final emittances $\varepsilon_i / \varepsilon_f$ $[\pi \text{ mm·mrad}]$ $33/2$ $15/1$ Cooling time constant, τ_c [s] 2.2 $0.05 (0.3)$ Total cooling time, t_c [s] 6.3 $0.14 (0.7)$	Electron current, I_e	[A]	3.5	0.5 (0.1)
Electron beam radius [mm] 25 25 Space charge potential, U_{Sp} [kV] 1.034 424.6 Cathode voltage, U_{cath} [kV] 26.52 3.318 Betatron functions at cooler, β_{HV} [m] 6.0 6.0 Initial, final emittances $\varepsilon_i/\varepsilon_f$ [π mm·mrad] 33/2 15/1 Cooling time constant, τ_c [s] 2.2 0.05 (0.3) Total cooling time, t_c [s] 6.3 0.14 (0.7)	Perveance of electron beam, p_g	[10 ⁻⁶ AV ^{-3/2}]	0.58	2.6 (0.52)
Space charge potential, U_{Sp} [kV] 1.034 424.6 Cathode voltage, U_{cath} [kV] 26.52 3.318 Betatron functions at cooler, β_{HV} [m] 6.0 6.0 Initial, final emittances $\varepsilon_i / \varepsilon_f$ [π mm·mrad] 33/2 15/1 Cooling time constant, τ_c [s] 2.2 0.05 (0.3) Total cooling time, t_c [s] 6.3 0.14 (0.7)	Electron beam radius	[mm]	25	25
Cathode voltage, U_{cath} [kV] 26.52 3.318 Betatron functions at cooler, β_{HV} [m] 6.0 6.0 Initial, final emittances $\varepsilon_i / \varepsilon_f$ [π mm·mrad] 33/2 15/1 Cooling time constant, τ_c [s] 2.2 0.05 (0.3) Total cooling time, t_c [s] 6.3 0.14 (0.7)	Space charge potential, U_{Sp}	[kV]	1.034	424.6
Betatron functions at cooler, β_{HV} [m]6.06.0Initial, final emittances $\varepsilon_i / \varepsilon_f$ $[\pi \text{ mm·mrad}]$ 33/215/1Cooling time constant, τ_c [s]2.20.05 (0.3)Total cooling time, t_c [s]6.30.14 (0.7)	Cathode voltage, Ucath	[kV]	26.52	3.318
Initial, final emittances $\varepsilon_i/\varepsilon_f$ $[\pi \text{ mm·mrad}]$ 33/215/1Cooling time constant, τ_c [s]2.20.05 (0.3)Total cooling time, t_c [s]6.30.14 (0.7)	Betatron functions at cooler, β_{HV}	[m]	6.0	6.0
Cooling time constant, τ_c [s] 2.2 0.05 (0.3) Total cooling time, t_c [s] 6.3 0.14 (0.7)	Initial, final emittances $\varepsilon_i / \varepsilon_f$	$[\pi \text{ mm·mrad}]$	33/2	15/1
Total cooling time, t_c [s] 6.3 0.14 (0.7)	Cooling time constant, τ_c	[s]	2.2	0.05 (0.3)
	Total cooling time, t_c	[s]	6.3	0.14 (0.7)

CERN SUMMER STUDENT LECTURE - 2019 -

C. Malbrunot

Stochastic cooling

Measure beam center by pick-ups Correction signal to opposite kicker

Pioneered at CERN for discovery W,Z bosons

Nobel Prize S. van der Meer

Cooling power decreases with decreasing energy

Cooling time ~ number of particles

 $\frac{\Delta p/p \sim 0.07\%}{\epsilon = 3-4~\pi \mathrm{mm.mrad}}$

LEAR

The AD Facility

The AD complex

AD

PS : 26 GeV/c proton on target $3x10^7 \bar{p}$ at 5.3 MeV (100 MeV/c) ~120s cycle

p̄ caught in Penning traps: 99.9% are lost

The AD complex

AD

PS : 26 GeV/c proton on target $3x10^7 \bar{p}$ at 5.3 MeV (100 MeV/c) ~120s cycle

p̄ caught in Penning traps: 99.9% are lost

ELENA

p̄ at 100 keV at improved beam emittance

all experiments gain a factor 10-100 in trapping efficiency

"simultaneous" delivery to almost all experiments

additional experimental zone

2021: to all other experiments

The AD complex

AD

PS : 26 GeV/c proton on target $3x10^7 \bar{p}$ at 5.3 MeV (100 MeV/c) ~120s cycle

p̄ caught in Penning traps: 99.9% are lost

ELENA

p̄ at 100 keV at improved beam emittance

all experiments gain a factor 10-100 in trapping efficiency

"simultaneous" delivery to almost all experiments

additional experimental zone

2021: to all other experiments

Penning traps

CERN SUMMER STUDENT LECTURE - 2019 -

C. Malbrunot

12

Penning traps

CERN SUMMER STUDENT LECTURE - 2019 -

C. Malbrunot

12

AD experiments

Proton

AD experiments

Proton

Antihydrogen experiments

 $\begin{array}{c} \bar{p} + e^+ \rightarrow \bar{H} + \gamma \\ \bar{p} + e^+ + e^+ \rightarrow \bar{H} + e^+ \end{array} \begin{array}{c} \text{Asacusa} \\ \text{Alpha} \\ \text{Atrap} \end{array}$

P

CERN SUMMER STUDENT LECTURE - 2019 -

C. Malbrunot

 π^+

Production and detection of cold antihydrogen atoms

M. Amoretti*, C. Amsler†, G. Bonomi‡§, A. Bouchta‡, P. Bowell,
C. Carraro*, C. L. Cesar*, M. Chariton*, M. J. T. Collier*, M. Doser‡,
V. Filippini☆, K. S. Fine‡, A. Fontana☆**, M. C. Fujiwara††,
R. Funakoshi††, P. Genova☆**, J. S. Hangstil, R. S. Hayano††
M. H. Holzscheiter‡, L. V. Jørgensen*, V. Lagomarsino*‡‡, R. Landua‡,
D. Lindelöf†, E. Lodi Rizzini§☆, M. Macri*, N. Madsen†, G. Manuzio*‡‡,
M. Marchesotti☆, P. Montagna☆**, H. Pruys†, C. Regenfus†, P. Riedier‡,
J. Rochet†*, A. Rotondi☆**, G. Rouleau‡*, G. Testera*, A. Variola*,
T. L. Watson* & D. P. van der Werf*

ATHENA Nature 419 (2002) 456

C. Malbrunot

 π^{-}

CERN SUMMER STUDENT LECTURE - 2019 -

 π^{-}

Spectroscopy of \overline{H}

CERN SUMMER STUDENT LECTURE - 2019 -

C. Malbrunot

Hyperfine splitting

21cm line

Hyperfine splitting

EXPERIMENTAL CONCEPTS

CERN SUMMER STUDENT LECTURE - 2019 -

C. Malbrunot

19

EXPERIMENTAL CONCEPTS

STATUS OF GS-HFS OF H/H

In a TRAP:

Precision of ~ 500 kHz

STATUS OF GS-HFS OF H/H

<u>In a TRAP:</u> Precision of ~ 500 kHz

<u>In a BEAM:</u>

Precision of ~3Hz on HYDROGEN 70 ν - ν_{lit} (kHz) Data 30 -10 10 20 60 Simulation 25.0 M. Ahmadi et al. 50 countrate (kHz) Counts 40 Nature 548, 66–69 (2017) 24.5 30 24.0 20 10 0.0 spin flip prob. 0 0.5 1,420.4 -1.20 1.2 1.419.2 2.4 1.422.8 3.6 1.421.6 1.424 b) 1.0 Relative frequency (MHz) 20 Trappable low-field-seeking states -0.5 $|c\rangle = |\downarrow \uparrow\rangle$ $|d\rangle = |\downarrow \downarrow\rangle$ 15 10 felative energy (GHz) c) 5 I_{HC} (A) 0.0 0 -5 -10 0.5 -15 C) Untrappable high-field-seeking states M. Diermaier et al. Nature $|a\rangle = |\uparrow |\rangle$ $|b\rangle = |\uparrow \uparrow\uparrow\rangle$ -20 0 5 15 20 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 Communications 8, v_{c} - v_{lit} (kHz) Magnetic field, B (T) 15749 (2017)

STATUS OF 1S-2S OF H

In a TRAP: Relative precision obtained : 2 × 10⁻¹² (~ 5 kHz)

Comparison to H in the same apparatus

- Constraints for further precision
- More **H**
- Control the QS (for beam)
- Colder \overline{H} :
 - Laser cooling (sympathetic cooling of particles/ions) Be⁺, La⁻, C₂⁻...
 - Lyman-alpha cooling of \bar{H}

Comparison to H in the same apparatus

- Constraints for further precision
- More H
- Control the QS (for beam)
- Colder H :
 - Laser cooling (sympathetic cooling of particles/ions) Be⁺, La⁻, C₂⁻...
 - Lyman-alpha cooling of \bar{H}

Observation of the 1S–2P Lyman- α transition in antihydrogen M. Ahmadi et al., Nature 561, 211-215 (2018)

ON THE GRAVITY SIDE

STATUS OF THE FIELD

Green dots---simulated annihilations

Red circles---434 Observed annihilations

Vertical position of annihilation vertex during release of trapping field

CERN SUMMER STUDENT LECTURE - 2019 -

C. Malbrunot

RECENT GRAVITY HIGHLIGHTS

New antimatter gravity experiments begin at CERN

The ALPHA-g and GBAR experiments have received their first beams of antiprotons

2 NOVEMBER, 2018 | By Ana Lopes

GBAR & ALPHA-g getting their first beam

CERN SUMMER STUDENT LECTURE - 2019 -

C. Malbrunot

FUTURE GRAVITY GOALS

Plurality of approaches

VERTICAL TRAP - increase up/down sensitivity (up to 1.3m trapping range) - much improved field control

Sign measurement planned soon 1% targeted \overline{H} cooling to ~20 mK and advanced magnetometry

H⁺ BEAM

- Cooling below 1 m/s : Sympathetic cooling of \overline{H}^+ - opens new horizons

<u>1% measurement</u> targeted

Some numbers to set the scale

Some numbers to set the scale

Some numbers to set the scale current temperature of \bar{H} probed in traps desirable range vertical height 1 km 1 mm :1:m current state of the art in \bar{H} production temperature 1 K 1 mK 1 μK vertical velocity 0.1 m/s 100 m/s 10 m/s 1 m/srecoil limit current lowest \bar{p} plasma Doppler limit temperature (4.2K)

Some numbers to set the scale

Some numbers to set the scale

ANTIPROTON EXPERIMENTS

 $v_c^2 = v_{-}^2 + v_{z}^2 + v_{+}^2$ superposition В reduced cyclotron motion Inject antiprotons along magnetic field axis end cap B Energy ~ few keV magnetron m axial motion compensation electrode С R Precisions measurement : only 1 p ring electrode U = IRcompensation Detect image current in resonance electrode circuit due to charge movement in $dE_p/dt = P_{cool} = -I^2R$ the Penning trap end cap →cooling Detection by cryogenic resonance circuit (low noise)

G. Gabrielse, W. Quint (LEAR)

ANTIPROTON EXPERIMENTS

ANTIPROTON EXPERIMENTS

 $\frac{g_{p,\bar{p}}}{2} = \frac{\nu_L}{\nu_c} = \frac{\mu_{p,\bar{p}}}{\mu_N}$

 $\frac{g_p}{2}$ = 2.792 847 344 62 (82)

G. Schneider et al., Science 358, 1081 (2017)

 $\frac{g_{\overline{p}}}{2} = 2.792\ 847\ 344\ 1\ (42)$

C. Smorra et al., Nature 550, 371 (2017)

Previous work by the ATRAP collaboration Di Saccia et al. Phys. Rev. Lett. 110, 130801 (2013)

first measurement more precise for antimatter than for matter

CERN SUMMER STUDENT LECTURE - 2019 -

C. Malbrunot

ANTIPROTONIC HELIUM

ANTIPROTONIC HELIUM

Your body produces antimatter:

The body of an 80 kg individual produces 180 positrons per hour! These come mostly from the disintegration of potassium-40, a natural isotope which is absorbed by drinking water, eating and breathing.

10 e+/s !

" **DAILY**" **Applications of antimatter - PET**

Antiprotons in accelerators! Antiprotons for nuclear studies (PUMA)

Antiproton Therapy (under study)

Medical imaging : PET

100 minutes)

positron lifetime spectroscopy : positron wavefunction can be localized in the attractive potential of a defect Check material structure, defects etc

A fuel?

Most powerful fuel you can imagine.

1g would be enough to drive a car around the earth for 1000 times or bring the space shuttle into orbit BUT

1g of antimatter contains 90 TJ (~21kT of TNT) 1g of \bar{p} ~ 6x10²³

CERN produces 3x10⁷ p/cycle ~ 10¹⁵ p/yr

1g of antimatter contains 90 TJ (~21kT of TNT) 1g of p̄ ~ 6x10²³

CERN produces 3x10⁷ p/cycle ~ 10¹⁵ p/yr

Almost a **billion years** needed to produce 1g (not saying trapping them all!)

1g of antimatter contains 90 TJ (~21kT of TNT) 1g of \bar{p} ~ 6x10²³

CERN produces 3x10⁷ p/cycle ~ 10¹⁵ p/yr

Almost a **billion years** needed to produce 1g (not saying trapping them all!)

Energy efficiency is about 10⁻⁹ We need ~9x 10²² J

Electricity discount price @ CERN 1kWh =3.6 10⁶ J =0.1€

1g of antimatter contains 90 TJ (~21kT of TNT) 1g of \bar{p} ~ 6x10²³

CERN produces 3x10⁷ p/cycle ~ 10¹⁵ p/yr

Almost a **billion years** needed to produce 1g (not saying trapping them all!)

Energy efficiency is about 10⁻⁹ We need ~9x 10²² J

Electricity discount price @ CERN 1kWh =3.6 10⁶ J =0.1€ 2 000 000 000 000 000 000 000 €

1g of antimatter contains 90 TJ (~21kT of TNT) 1g of \bar{p} ~ 6x10²³

CERN produces 3x10⁷ p/cycle ~ 10¹⁵ p/yr

Almost a **billion years** needed to produce 1g (not saying trapping them all!)

Energy efficiency is about 10⁻⁹ We need ~9x 10²² J

Electricity discount price @ CERN 1kWh =3.6 10⁶ J =0.1€ 2 000 000 000 000 000 000 000 €

a year of \bar{p} trapped and annihilating would illuminate a light bulb for 5s

Enjoy your Summer Studentship!

AD PHYSICS PROGRAMME : TESTING FUNDAMENTAL SYMMETRIES & CORNERSTONE OF SM

TEST BODIES : EXOTIC ANTIMATTER ATOMS & ANTIPROTONS

>20 YEARS OF UNIQUE RESEARCH WITH ANTIHYDROGEN

ENTERING PRECISION AREA WITH ANTIHYDROGEN

MANY OTHER IDEAS : CHARGE NEUTRALITY, PROTONIUM SPECTROSCOPY, PORTABLE PBAR TRAP ...

ANTIMATTER AS MEDICAL AND SCIENTIFIC TOOLS

OTHER APPLICATIONS OF ANTIMATTER?

Enjoy your Summer Studentship!

AD PHYSICS PROGRAMME : TESTING FUND AMENTAL CMANETRIC & CODMEDITIONE OF SM TEST BODIE >20 YEARS C ENTERING I MANY OTHI SPECTROSC

ANTIMATTER AS MEDICAL AND SCIENTIFIC TOOLS

OTHER APPLICATIONS OF ANTIMATTER?